NG DialogPack Guide

USER MANUAL

© 2018 LMD Innovative
LMD Innovative

This page is intentionallyleft blank.
Remove this text from the manual
template if you wantit completely blank.

Table of Contents

1. Overview 5
2. TNGTaskDialog 11
3. TNGInputDialog 15
4. Advanced Features 21
5. Fluent Interface 27
Index 0

NG DialogPack Guide © 2018 LMD Innovative

This page is intentionallyleft blank.
Remove this text from the manual
template if you wantit completely blank.

Overview

1 Overview

LMD NG-DialogPack is a part of Next Generation (NG) package suite. All these packages are based on
new IDE and language features of latest Delphi IDE versions.

NG-DialogPack is based on the features provided by Microsoft Windows Vista Task Dialog API, which
allows to create and show Windows Vista (Windows 7) like dialogs. The package extends platform API
with emulation mode, which allows to use NG-DialogPack components in previous OS versions, such as
Windows XP. Also, emulation mode provides additional features, such as Input Dialog, which has no
analog in platform APL

Following is a simple example of the task dialog:

File operation @

) | Delete files?

File "MyFile.tt" and 32 files more are about to be
deleted. Do you want to continue?

< Delete "My File.txt"

= Delete all

[] Do not ask again

Features

NG-DialogPack package contains tree major components:

e TNGTaskDialog component allows to configure and show Windows Vista (Windows 7) like task dialogs.
Task dialog can contain:
0 Caption, Title and Content texts.
0 Mai nl con, which can be one of the standard icons, like Information, Warning, Error, ect.; or a
custom icon.
o Standard buttons, such as Ok, Cancel, Yes, No, Retry, ect; or a custom buttons, with custom
Capt i on, Modal Resul t and Enabl ed state, configurable by the user. There is the ability to show
custom buttons as command links, supporting CommandLi nkHi nt feature.
o Radio buttons with capti on and Enabl ed state configurable by the user.
o Progress bar with various configurable properties, such as M n, Max and Posi ti on.
o Expandable additional information text with expand/collapse button.
o Verification check-box with configurable initial check-box state and check-box caption.
o Footer area with Foot er | con, analogous to Mai nl con, and Foot er Text .
¢ TNGInputDialog component allows to configure and show input dialog, which is a dialog that contains
some input control, such as edit or memo, and provides a way for the user to input a value. Input
dialog can contain:

NG DialogPack Guide © 2018 LMD Innovative

Overview

0 Caption, Title and Cont ent texts, Mai nl con, standard and custom buttons, expandable additional
information, verification check-box and footer area - all these features are analogous to
TNGTaskDi al og.

o Input control, which can be configured by the user by assigning a value to | nput Type property. Input
control can be one of the following: edit, memo, password edit, editable combo-0x, non-editable
combo-box, date-time picker or a custom input control (or several controls) configured as a mini-
HTML template, using Tenpl at eHt i property.

0 | nput Val ue property can be used to specify initial input value, which is shown when the dialog
executed. As well, I nput I t ems property can be used to configure combo-box items.

e TNGMessageDialog component allows to configure and show simple message dialogs with a look,
compatible with TNGTaskDi al og. The main purpose of the component is to be used internally inside
TNGDi al ogs. Message overloaded methods, so, it, probably, need not be used explicitly. The
component provides a set of properties, which are analogous to Delphi standard MessageDl g function
parameters.

First two dialog components support advanced set of features, such as callback timer, onBut t onCl i ck
event with the ability of dialog content modification from the event handler, and navigation.

Fluent Interface

We are proud to introduce a simple, very convenient API for executing dialogs. The API is organized as
static methods of TNGDI al ogs structure, most of which are overloaded. In most cases this API allows to
show required dialog writing one or just several lines of code without placing dialog components on the
form. The API provides replacement for standard Delphi dialog functions, such as ShowMessage,
MessageDl g, | nput Box and | nput Quert to allow to show dialogs, compatible with task dialog look and
feel. It also contains some additional simple dialog functions, such as Error, War ni ng or | nf or mat i on.
All these function are overloaded, which allows to specify only required parameters.

Another part of Fluent Interface API is our unique dialog builders, available for task and input dialogs.
Following are some usage examples:

The code:
TNGDi al ogs. Task(' My caption', "My title', 'My description text')
.lcon(tdilnformation)

.Buttons([tchbOk, tcbCancel], tcbOk)
. Execut e;

will show the following simple dialog:

My caption ﬁ

My title

My description text

More complex example:

NG DialogPack Guide © 2018 LMD Innovative

Overview

case TNGDi al ogs. Task(' My caption', "My title', 'My description text')
.lcon(Application.lcon)
.Button(' My button', 100, True)
.Buttons([tcbOk, tcbCancel])
. Expandabl el nfo(' My I ong | ong expandabl e information text"')
.Footer(' My footer text', tdiWrning)
. Execut e of
100: ; I/ My button clicked.
nr OK: ;
nT Cancel :
end;

will show the following:

My caption ﬁ

1@ My title

My description text

i:\}:ﬁ' See details [My button J [K,] [Cancel

/1 My footer text

For more information please look at Fluent Interface description.
Design-Time Editor

The package provides design-time editor for TNGTaskDi al og and TNGI nput Di al og components. Double
click on the dialog component. placed on a form, to execute design-time editor. The editor provides a

simple way to configure dialog, and provides the ability to look at the resulting dialog by clicking "Show
Dialog" button:

NG DialogPack Guide © 2018 LMD Innovative

Overview

P
TaskDialog Designer: MGTaskDialogl ﬁ
| General | Icons |Expanded information | Buttons | Radio buttons | Progress bar|
Main Icon
— Preview
1 I &, -
; I: [| =
- - =4
Maone Warning Error
e e
o 9
. £ . —_
Information Shield Question e
|:| Use custom icon Load main icon...
Footer Icon
Preview
A (X} i]
Mone Warning Error Informa...
] @
Shield Question
[] Use custom icon Load footer icon...
Show dialog | [V] Platform Mode [oK J ’ Cancel

© 2018 LMD Innovative

NG DialogPack Guide

This page is intentionallyleft blank.
Remove this text from the manual
template if you wantit completely blank.

TNGTaskDialog

TNGTaskDialog

2 TNGTaskDialog

TNGTaskDi al og is a dialog component, which implements features, provided by Microsoft Windows Vista Task Dialog A

The dialog surface can contain a variety of standard elements, however usually they are not used all at
ones. Full task dialog structure is shown below:

My caption s 1 ﬁ

My tittle == 2 13/
ol 3
f My description text ~
4
My long leng expandable information text ” 6
/
T —— |
71 My radic button 1
i@ My radic button 2 7
3 (71 My radic button 3
4‘:\ CrpbiTe NnogpoBHocTi [My button 1] [My button 2] [oK] [OTmMeHa
[C] Do not ask again =g -l \11 7’
10
/0y Mt footer text s 12

My caption ﬁ

) | My tittle

My description text

< My button 1

/ Wy command link hint 1

14
“. ® My button 2
My command link hint 2

1) Dialog form caption. Use Capt i on property to specify the caption text.
2) Dialog title. This is short main text. Use Ti t | e property to specify it.
3) Dialog description. The description is a longer text, which describes the required action more

precisely. Use Text property to specify it.

NG DialogPack Guide © 2018 LMD Innovative

TNGTaskDialog

4) Main dialog icon. The dialog can show no icon, one of the standard icons or a custom icon. To
specify one of the standard icons use Mai ni con property, to specify custom icon - use
Cust omMai nl con property. Note, that setting one property will reset another. The icon is always re-
sized to standard size, which is usually 32x32 pixels.

5) Additional expandable text; can be specified using Expanded! nf or mat i on property. This text can
contain even more long description. Usually this text is not visible (collapsed) until the user click on
expand button (8). Expand button (8) is not shown if ExpandedI nf or mat i on property value is set to
empty string.

6) Progress bar. Has a variety of properties, such as M n, Max, Posi tion, St at e and Mar quee. For
showing progress bar the user should include t df ShowPr ogr essBar value into FI ags set property.
The timer feature can be used to update progress bar state during dialog execution (look at
Advanced Features for more information).

7) Radio buttons. Radio buttons can be configured using Radi oBut t ons collection property. The
collection allows to add/remove radio buttons, which are of type TNGTaskDI gRadi oBut t onl t em
class. capti on and Enabl ed state can be specified for each radio button. As well a radio button
have Def aul t property, which can be set to Tr ue to specify initially selected radio button; setting
this property to Tr ue for one radio button will reset it to Fal se for all others.

8) Expand/collapse button. This button is shown when Expanded! nf or mat i on property is set to non
empty string. It allow to expand or collapse (show or hide) additional expandable information (5).
The caption of this button in both expanded and collapsed states is set automatically by OS, but can
be customized using ExpandBut t onCapt i on and Col | apseBut t onCapt i on properties.

9) Verification check-box. This check-box is shown when veri fi cati onText property value is set to
non empty string. Check-box checked status can be controlled using t df Veri fi cati onFl agChecked
dialog flag.

10) Custom buttons. Custom buttons (as opposed to standard buttons(11)) are additional dialog buttons.
They can be configured using Cust onBut t ons collection property. Cust onBut t ons collection allows
to add/remove custom buttons, which are of type TNGTaskDI gBut t onl t emclass. Capti on, Enabl ed
and Modal Resul t properties can be specified for each custom button. Usually the user should
specify unique modal result for each custom button to be able to know, which button has been
pressed during dialog execution. As well a custom button have Def aul t property, which can be set
to True to specify the default button; setting this property to Tr ue for one button will reset it to
Fal se for all others. Also, task dialog provides an option to show custom buttons as command links
(14).

11) Standard buttons. Can be specified using But t ons set property. Standard buttons can't be disabled,
and as well, standard buttons has standard modal results. For example, t cbok button will have
nr Ok modal result. One of the standard buttons can be set as default using Def aul t But t on
property. Setting the property will reset Def aul t property in all custom buttons (and vice versa). If
there no standard or custom buttons configured, OK button is automatically added.

12) Footer. The footer contain Foot er I con and Foot er Text . The footer is shown only if Foot er Text
property contains non empty string value. Footer icon can be one of the predefined icons or a
custom icon just like main icon (4). The icon is always re-sized to standard size, which is usually
16x16 pixels.

13) Standard Close window button :). However, there is an important note: clicking on it will fire
OnBut t on click event handler with nr Cancel modal result. Just like with other buttons, the user can
set canCl ose event handler parameter to Fal se to prevent dialog closing (look at Advanced
Features for more information).

14) Custom buttons shown as command links. Task dialog allows to show custom buttons as command
links. To achieve this t df UseCommandLi nks dialog flag should be used. Usually command links show
provided by OS standard arrow icon, however, the user can hide these icon using
t df UseCommandLi nksNol con dialog flag. Command links provides additional hints, which are longer
text descriptions. They can be specified using CommandLi nkHi nt button property.

Platform Mode

NG DialogPack Guide © 2018 LMD Innovative

TNGTaskDialog

As has been noted above TNGTaskDi al og is based on Task Dialog API, which was first found in Microsoft
Windows Vista. To allow our component be usable on previous OS version, such as Windows XP, we
implemented fully native emulation mode. This mode can be turned on explicitly or will be used
automatically if platform API is not available (on Windows XP). To turn emulation mode on the user
should set Pl at f or mvbde property to t dmNever .

Dialog Execution

TNGTaskDi al og component can be placed on the form and configured using Delphi's Object Inspector or
dialog component editor. The dialog can be also configured in code, using Fluent Interface. Anyway, after
that the dialog should be executed. The dialog can be executed by calling Execut e method, which works
like standard showMbdal method, and will blocks until dialog is closed. Execut e method returns modal
result value, which specifies, which button has been pressed. Returned modal result can be one of the
standard predefined values, such as nr Ok, nr Cancel , nr Yes, nr No, ect. Or, it can be a value specified as
Modal Resul t property value for a custom button.

Note, that is no custom buttons was specified and standard buttons But t ons property has been explicitly
reset to [] empty set, then Ok button will be implicitly added. So, be prepared for nr ok return value in
this case.

Also, remember, that standard close window button (13) works as a Cancel button. So, be prepared for
nr Cancel return value.

Among return value of Execut e method, the dialog provides some additional properties, which describe
dialog resulting state. These properties are:

e Modal Resul t - same as Execut e method return value.

e Clicked - provides a reference to last clicked custom button, or ni | - if one of the standard buttons
has been clicked. However, its a good practice to assign unique modal result values for each button.
For custom buttons values can start from some number, which is guaranteed to be greater than all
standard values. For example, use the values >= 100. In this case Cl i cked property is basically
unneeded and all decisions can be made based on Modal Resul t purely.

e Sel ect ed - provides a reference to selected radio button. Unlike buttons, radio buttons has no modal
result, however, since they are collection items, standard | ndex method can be used. So,

Sel ect ed. | ndex can be used to organize case/ of construct with constant numeric values.

Note that TNGTaskDi al og supports advanced execution features, like timer, onBut t onCl i ck event and
navigation.

NG DialogPack Guide © 2018 LMD Innovative

TNGInputDialog

TNGInputDialog

3 TNGInputDialog

TNG nput Di al og is a dialog component, which provides a way for the user to enter input value. Usually
this value is a string value, so edit or memo controls are used to represent/edit the value. However, input
dialog supports more input controls:

Edit

Memo

Date-time picker

Editable Combo-box
Non-editable Combo-Box
Password edit

Custom Mini-HTML template.

This dialog can be used in situations, where InputBox and InputQuery standard Delphi functions has been
previously used. The dialog descend some of the features from task dialog and provides compatible look
and feel. The dialog surface can contain a variety of standard elements, however usually they are not
used all at ones. Full input dialog structure is shown below:

My caption =1 ﬁ
r
. /
My tittle _
12
f MWy description text = 2
4 .-#-‘\5
7 My long long expandable information text s
(A Hide details
_ My button] [QK] [Cancel
[Do nntaskagalnhs ~ ~1
A My footer text ==——=—L1

NG DialogPack Guide © 2018 LMD Innovative

TNGInputDialog

-

My capticn

My tittle

My description text /

26.02.2013

1 Deppane 2013 k

Mu Br Cp Yr Mr C6 Bc
28 29 30 31 1 2 3
4 5 6 7 & 910
11 12 13 14 15 16 17
18 19 20 21 22 23 M
25[3hR127 28 1 2 3
4 5 6 7 & 910
[] Ceroans: 26.02.2013

—

1) Dialog form caption. Use Capt i on property to specify the caption text.

2) Dialog title. This is short main text. Use Ti t | e property to specify it.

3) Dialog description. The description is a longer text, which describes the required action more
precisely. Use Text property to specify it.

4) Main dialog icon. The dialog can show no icon, one of the standard icons or a custom icon. To
specify one of the standard icons use Mai ni con property, to specify custom icon - use
Cust omMai nl con property. Note, that setting one property will reset another. The icon is always re-
sized to standard size, which is usually 32x32 pixels.

5) Input control. Can be one of the types specified above; | nput Type property can be used to specify
input control type. Initial input value can be specified using | nput Val ue property. Also, use I t ens
property to specify combo-box items. If | nput Type is set to i t Tenpl at e, then the Mini-HTML
template can be specified using Tenpl at eHt M property; refer to NG-HtmlIPack and Mini-HTML
documentation for more information.

6) Additional expandable text; can be specified using Expanded! nf or mat i on property. This text can
contain even more long description. Usually this text is not visible (collapsed) until the user click on
expand button (8). Expand button (8) is not shown if Expanded! nf or mat i on property value is set to
empty string.

7) Expand/collapse button. This button is shown when Expanded! nf or mat i on property is set to non
empty string. It allow to expand or collapse (show or hide) additional expandable information (6).
The caption of this button in both expanded and collapsed states is set automatically by OS, but can
be customized using ExpandBut t onCapt i on and Col | apseBut t onCapt i on properties.

8) Verification check-box. This check-box is shown when Veri fi cati onText property value is set to
non empty string. Check-box checked status can be controlled using t df Veri fi cati onFl agChecked
dialog flag.

9) Custom buttons. Custom buttons (as opposed to standard buttons(10)) are additional dialog buttons.
They can be configured using Cust onBut t ons collection property. Cust onBut t ons collection allows
to add/remove custom buttons, which are of type TNGTaskDl gBut t onl t emclass. Capti on, Enabl ed
and Modal Resul t properties can be specified for each custom button. Usually the user should
specify unique modal result for each custom button to be able to know, which button has been
pressed during dialog execution. As well a custom button have Def aul t property, which can be set
to True to specify the default button; setting this property to Tr ue for one button will reset it to
Fal se for all others.

NG DialogPack Guide © 2018 LMD Innovative

TNGInputDialog

10) Standard buttons. Can be specified using But t ons set property. Standard buttons can't be disabled,
and as well, standard buttons has standard modal results. For example, t cbok button will have
nr Ok modal result. One of the standard buttons can be set as default using Def aul t But t on
property. Setting the property will reset Def aul t property in all custom buttons (and vice versa). If
there no standard or custom buttons configured, OK button is automatically added.

11) Footer. The footer contain Foot er I con and Foot er Text . The footer is shown only if Foot er Text
property contains non empty string value. Footer icon can be one of the predefined icons or a
custom icon just like main icon (4). The icon is always re-sized to standard size, which is usually
16x16 pixels.

12) Standard Close window button :). However, there is an important note: clicking on it will fire
OonBut t on click event handler with nr Cancel modal result. Just like with other buttons, the user can
set canCl ose event handler parameter to Fal se to prevent dialog closing (look at Advanced
Features for more information).

13) Just an example of date-time picker as input control. Note, that in this case provided initial
I nput Val ue (if not empty string) need to be converted to TDat eTi me value. So, if incorrect string
will be specified, the exception will be raised.

Platform Mode

Unlike TNGTaskDi al og, TNG nput Di al og is always executed in emulated mode, because platform Task
Dialog API does not provide any way to organize input dialog functionality.

Dialog Execution

TNGI nput Di al og component can be placed on the form and configured using Delphi's Object Inspector
or dialog component editor. The dialog can be also configured in code, using Fluent Interface. Anyway,
after that the dialog should be executed. The dialog can be executed by calling Execut e method, which
works like standard showwbdal method, and will blocks until dialog is closed. Execut e method returns
modal result value, which specifies, which button has been pressed. Returned modal result can be one of
the standard predefined values, such as nr Ok, nr Cancel , nr Yes, nr No, ect. Or, it can be a value
specified as Modal Resul t property value for a custom button.

Note, that is no custom buttons was specified and standard buttons But t ons property has been explicitly
reset to [] empty set, then Ok button will be implicitly added. So, be prepared for nr ok return value in
this case.

Also, remember, that standard close window button (13) works as a Cancel button. So, be prepared for
nr Cancel return value.

Among return value of Execut e method, the dialog provides some additional properties, which describe
dialog resulting state. These properties are:

e Modal Resul t - same as Execut e method return value.

e | nput Val ue - after dialog execution is contains entered (modified) input value.

e Clicked - provides a reference to last clicked custom button, or ni | - if one of the standard buttons
has been clicked. However, its a good practice to assign unique modal result values for each button.
For custom buttons values can start from some number, which is guaranteed to be greater than all
standard values. For example, use the values >= 100. In this case Cl i cked property is basically
unneeded and all decisions can be made based on Modal Resul t purely.

e Sel ect ed - provides a reference to selected radio button. Unlike buttons, radio buttons has no modal
result, however, since they are collection items, standard | ndex method can be used. So,

Sel ect ed. | ndex can be used to organize case/ of construct with constant numeric values.

NG DialogPack Guide © 2018 LMD Innovative

TNGInputDialog

Note that TNGI nput Di al og supports advanced execution features, like timer, onBut t onCl i ck event and
navigation.

NG DialogPack Guide © 2018 LMD Innovative

This page is intentionallyleft blank.
Remove this text from the manual
template if you wantit completely blank.

Advanced Features

Advanced Features

4 Advanced Features

Dialog Events while Executing

TNGTaskDi al og and TNG nput Di al og components provides several events, which can be fired while
dialog is executing. These events are:

OnBut t onCl i ck - fired when standard or custom button (or command link) is clicked.
OnRadi oBut t onCl i ck - fired when radio-button is selected.

OnVerificationClick - fired when verification check-box is checked/unchecked.
OnExpanded - fired when additional Expandabl el nf or mat i on is expanded or collapsed.
onTi ner - fired periodically when internal timer is active.

Usually, if some of standard or custom buttons (or command links) has been clicked, the dialog is closed
automatically returning associated with the button Modal Resul t . However, this can be prevented writing
OnBut t onCl i ck event handler and assigning Fal se value to ACanCl ose var event parameter. In this
case, the dialog will not be closed, and will remains executing. As already has been noted above, this is
also true for standard dialog window close button, which is treated as a button with nr Cancel modal
result.

Another event, which provides a way for controlling dialog closing is onTi ner . It has ACl ose var
parameter, which can be set to Tr ue to close the dialog; however, unlike onBut t onCl i ck event the
default value for this parameter is Fal se, which states that the dialog remains executing.

All other mentioned events does not provide a way to close executing dialog at all. So, among other
purposes all these events can be used for changing dialog settings and appearance "on-the-fly". For
example, one can write OnRadi oBut t onCl i ck event handler to enable or disable dialog buttons based or
change dialog Ti t | e or Text on which radio-button is selected.

Generally, the following "on-the-fly" modifications are supported:

Dialog Titl e, Text and Mai nl con (Cust omMai nl con).

For custom buttons: Enabl ed and El evat i onRequi r ed states.

For radio-buttons: Enabl ed state.

For progress-bar: all progress bar setting, such as M n, Max, Posi ti on, St at e and Mar quee.
Expanded! nf or mati on.

Foot er Text and Foot er | con (Cust onFoot er | con).

Changing these properties from within mentioned event handlers will adjust dialog appearance
immediately. All other properties does not support this concept due to WinAPI limitation; as well, they
are not supported even in emulation mode for consistency with platform mode. For example, you cannot:

¢ Change dialog window Capti on.

¢ Add/remove standard or custom buttons or radio-buttons. Change their captions.

¢ Change expandable information button captions, e.g. ExpandBut t onCapt i on and
Col | apseBut t onCapt i on properties.

e Change VerificationText.

e Change dialog FI ags.

o ect.

Timer

NG DialogPack Guide © 2018 LMD Innovative

Advanced Features

TNGTaskDi al og and TNG nput Di al og components provides built-in timer support. The timer can be
activated using t df Cal | backTi mer flag. The timer will fire onTi mer event every 200ms during dialog
execution. As specified above, "on-the-fly" dialog modification is supported within onTi mer event handler.

onTi mer event provides the following parameters:

e ATi ckCount parameter; this parameter specifies a period in milliseconds from the dialog execution or
from the last reset.

e AReset boolean var parameter; this parameter can be set to Tr ue to reset tick count to zero. Default
parameter value is Fal se.

e ACl ose boolean var parameter; this parameter can be set to Tr ue to close the dialog. Default
parameter value is Fal se.
Following are some practical examples of timer usage:

¢ Updating progress-bar position to reflect background task execution point:
Download ﬁ

Downloading..

The file "MyFile.dat” is been downloaded. Please wait.

Cancel

¢ Update remained time in dialog Ti t 1 e or Text and close the dialog after some timeout to continue
task with default action:

[Restart ﬁ

Restart Windows?

Computer need to be restarted. Auto-restart in (15)
ceconds...

= Restart now

2 Restart later

NG DialogPack Guide © 2018 LMD Innovative

Advanced Features

e Trial application dialog, which enables "Continue trial" button only after some time:
Trial Applicaticn ﬁ

N Your trial period expired

Consider to update My Application license to prevent this
window from been shown. Continue in (3] seconds...

2 Buy now

a» Continue tria

Navigation

Navigation feature allows to implement multi-page dialogs. Such kind of dialogs usually contain Next and
Previous custom buttons to allow the user to navigate between pages. Write onBut t onCl i ck event
handler and use Begi nNavi gat e and Navi gat e methods to reconfigure executing dialog to show next
page. Dialog modifications, made between Begi nNavi gat e and Navi gat e methods are not propagated
to executing dialog immediately; instead, all modifications will be applied during Navi gat e method call. It
important to understand that the navigation is a special mode, provided by WinAPI, and thus, "on-the-fly"
maodification restrictions are not applied here; the user can freely add/remove buttons or radio-buttons,
change dialog flags, ect.

Following is an example of code, which use navigation feature:

procedure TForml. NGTaskDi al oglButtonClick(Sender: TObject;
AMbdal Resul t: TModal Resul t; ACustonmButton: TNGTaskDl gButtonltem
var ACanCl ose: Bool ean);
begin
i f AModal Result in [100, 101] then
begi n
if AMbdal Result = 101 then
I nc(PageNum
el se
Dec(PageNum ;

NGTaskDi al ogl. Begi nNavi gat e;
try

Set upPage(PageNum ;
finally

NGTaskDi al ogl. Navi gat e;
end;

ACanCl ose : = Fal se;

end;
end;

NG DialogPack Guide © 2018 LMD Innovative

Advanced Features

procedure TForml. Set upPage(APageNum | nt eger);
begin

NGTaskDi al ogl. Title := "Mil ti-page dial og exanple. Page:

I nt ToStr (APageNum ;
case APageNum of
0: NGTaskDi al ogl. Text

"This is the first page';

1: NGTaskDi al ogl. Text := "This is the m ddl e page';
2: NGTaskDi al ogl. Text := '"This is the | ast page';
end;

NGTaskDi al ogl. Cust onButtons. Cl ear;

i f APageNum > O then
wi th NGTaskDi al ogl. Cust onmBut t ons. Add do

begi n
Caption = 'Previous';
Modal Result : = 100;

end;

i f APageNum < 2 then
wi th NGTaskDi al ogl. Cust onBut t ons. Add do
begi n
Caption " Next';
Modal Result : = 101,
end
el se
wi th NGTaskDi al ogl. Cust onmBut t ons. Add do
begi n
Caption
Modal Resul t
end
end;

"Finish';
nr OK;

The code above will show dialog with the following pages:

Project2.exe @

Multi-page dialog example. Page: 0

This is the first page

NG DialogPack Guide

© 2018 LMD Innovative

Advanced Features

Project2.exe ﬁ

") Multi-page dialog example. Page: 1

This is the middle page

[Previous][Mext]

Project2.exe M

@) utti-page dialog example. Page: 2

This is the last page

[Previous J[Finish

The dialog will be closed on "Finish" button click, because its Modal Resul t is set to nr Ok.

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

Fluent Interface

5 Fluent Interface

NG-DialogPack fluent interface provides an easy and very convenient way for executing dialogs directly
from code, without placing dialog component on the form. Fluent interface is organized as a static
methods of TNGDi al ogs structure. Most of the methods are overloaded and provides different parameter
sets for simplicity of use. Our goal was to provide a way to execute a variety of commonly used dialogs,
starting from easy analogs of standard Delphi's showvessage, MessageDl g, | nput Box OF | npur Query
functions, and continuing with more complex, highly configurable task and input dialog (via dialog
builders).

Simple methods

TNGDi al ogs structure provides huge amount of overloaded methods, which can be used to execute
simple common dialogs. As an example of how to use these methods, look at the following code, which
executes the analog of showMessage standard Delphi function:

TNGDi al ogs. Message(' Hell o World');

The code above will show the following dialog:

[Projectl ﬁ

Hello World

In the next list all simple fluent interface methods are decribed:

e Message - overloaded set of methods, which provide a way for executing message like dialogs; dialogs
are analogous to standard Delphi's ShowMessage and MessageDl g functions. The methods use the
same parameter types as used in MessageDl g. Internally, Message methods are implemented using
TNGMessageDi al og, which provides look and feel, compatible with platform task dialogs.

e | nfo, Error, War ni ng - methods, which allow to execute pre-configured dialog analogous to Message,
which has single Ok button and the corresponding standard icon.

e Confirm- overloaded set of methods, which are analogous to | f no, Error or war ni ng methods, but
show dialogs with question standard icon and Yes/No buttons (by default); the methods also allow to
specify required buttons explicitly.

e | nput Box - overloaded set of methods, which provides a way for executing input dialogs, in a way
analogous to standard Delphi' | nput Box function. Internally the methods use TNG nput Di al og, which
provides task dialogs compatible look and feel. Just like standard Delphi function, | nput Box methods
take ADef aul t string (or TDat eTi nme) parameter and return modified by the user value.

e | nput Query - overloaded set of methods, which provides a way for executing input dialogs, in a way
analogous to standard Delphi' | nput Query function. Internally the methods use TNGI nput Di al og,
which provides task dialogs compatible look and feel. Just like standard Delphi function, I nput Query
methods take Aval ue string (or TDat eTi nme) var parameter and return Bool ean value indicating
whether the user clicked Ok button.

Dialog Builders

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

TNGDi al ogs structure provides additionally two sets of overloading methods (for TNGTaskDi al og and
TNG nput Di al og respectively), which returns corresponding builder structures, which allow to configure
almost all aspects of the dialogs in a simple and accurate looking code. These two sets of methods are:

e Task - overloaded set of methods, which returns TNGTaskDi al og. TTaskBui | der structure, which
allows to continue inline configuration of executing TNGTaskbDi al og.

e | nput - overloaded set of methods, which returns TNGTaskDi al og. TI nput Bui | der structure, which
allows to continue inline configuration of executing TNGI nput Di al og.

Despite the fact that these methods are overloaded, they allow to specify only basic dialog properties,
like caption, Title, Text and Mai nl con as method parameters. All other dialog aspects can be
configured inside the same code statement using returned builder structure methods. Following is the
example of how to use such APL:

TNGDi al ogs. Task(' My caption', "My Title', 'My text')
.lcon(Application.lcon)
.Button(' My Button', 100, True)
.Buttons([tcbCk, tcbCancel])
. Footer ('MW footer', tdiWrning)
. Execute;

The code above will shows the following dialog:

My capticn ﬁ

1@ My Title

My text

[My Button][0K][OTrmeHa

v My footer

Another example shows how to use input dialog builder:

TNGDi al ogs. I nput (' My caption', "My title', "My text')
.lcon(tdi Question)
.Button(' My Button', 100, True)
.Buttons([tcbCk, tcbCancel])
.Value('Initial value')
. Execute;

The code above will shows the following dialog:

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

My capticn @

My title

My text

Initial value

[My Button J[()4 ” Cancel

As can be seen, this complex dialog, which contains custom main icon, custom button (which is specified
to be a default button) and a footer with configured icon, is executed using simple and clean code.
Builder structures provides a huge sets of overloaded methods, which allows to specify:

All text dialog properties, such as Caption orTitle;

Main icon;

Footer text and icon;

Expandable information;

Verification text;

Standard and custom buttons; including specification of custom buttons modal results, Enabl ed state
and specification of the default button;

UseCommandLi nks flag;

¢ Radio-buttons;

e Input type, input value and items for input dialog.

Note: Main and footer icon related methods allow to specify the corresponding icon in a form of standard
icon, using TNGTaskDialogIcon enumeration, or a custom icon in a form of TIcon or TStream or resource
name to load icon from.

Formally, almost all builder methods, such as | con or But t on return the builder itself, so the
configuration can be continued just in the same code expression. The exception of this rule is Execut e
method and Di al og property:

Execute Method

Execut e builder method should be called as a last method after all configuration methods. It executes
pre-configured dialog and return TMbdal Resul t, just like the corresponding dialog's Execut e method.
Usually the returned value somehow used ini f\t hen or case\ of f Delphi construct to know, which
button has been clicked; in such cases whole dialog building expression can be placed directly inside
mentioned constructs. For example:

case TNGDi al ogs. Task(' My caption', "My Title', 'My text')
.Button('My Button', 100, True)
.Buttons([tcbOk, tcbCancel])
. Execut e of
nr Ok:
{ Do sonething } ;
nr Cancel :
{ Do sonething } ;

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

100:
{ Do sonmething } ; // Custom'M Button' clicked.
end;

Sometimes, its required to have a reference to executed dialog, to get access to some its properties. For
example, a reference to the dialog is needed to get known, which radio-button has been selected by the
user. For such cases, Execut e set of methods provides an overload, which has ADi al og output
parameter. Note, that ADi al og parameter type is a template smart pointer type Aut oFr ee<>, which
allows to omit dialog instance destruction code and associated with it commonly used try\final I y
construct. Following is the example code, which shows how to use Aut oFr ee<> correctly:

var
dl g: Aut oFr ee<TNGTaskDi al og>;
begin
case TNGDi al ogs. Task(' Form state', 'Set new form state',

"Just for exanple')
.Buttons([tcbOk, tcbhCancel], tchCk)
. Radi oButton(' Maxi m ze form)
. Radi oButton(' M nim ze form)
. Radi oButton(' Close form)
. Execut e(dl g) of
nr Ok: case dl g. Sel ected. | ndex of
0: Self.WndowState : = wsMaxi m zed;
1: Self.WndowState := wsM nim zed,;
2: Self.Close;
end;
nr Cancel : ; // Do nothing.
end;
end;

Dialog Property

Dialog builder property can be called instead of Execut e method to obtain an instance of configured
dialog without it execution. Analogous to Execut e method, it should be called as a last call after all
configuration methods. It also returns the instance of the dialog as an Aut oFr ee<> value, which does
not require writing explicit destruction code.

Despite the fact that our fluent interface provides a variety of methods to configure executing dialog, it
does not cover all aspects. Some things, especially related to dialog events, are not included. Following is
an example, which shows how Di al og property can be used to get executing dialog reference before
execution and assign an event handler to onButt onCl i ck dialog event:

var
dl g: Aut oFr ee<TNGTaskDi al og>;
begin
dl g : = TNGDi al ogs. Task(' My caption', "My title', "My text')
.Buttons([tcbOk, tcbCancel], tcbOk)
. Di al og;
dl g. OnButtonClick := MyButtonClick;
dl g. Execut e;
end;

There exist an even simpler way, which provides similar result, even without declaring di g variable:

begin
wi th TNGDi al ogs. Task(' My caption', "My title', "My text')
.Buttons([tcbOk, tcbCancel], tchCk)
. Di al og() do

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

begi n
OnButtonClick := MyButtonClick;
Execut e;
end;
end;

NG DialogPack Guide © 2018 LMD Innovative

	Table of Contents
	Overview
	TNGTaskDialog
	TNGInputDialog
	Advanced Features
	Fluent Interface

