
®

NG Drag&Drop Guide

USER MANUAL

© 2018 LMD Innovative
LMD Innovative

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

3

NG Drag&Drop Guide © 2018 LMD Innovative

Table of Contents

1. Overview 5

2. Data Dragging as Source 9

3. Data Accepting as Target 13

4. Drop Effects 17

5. Data Formats 21

5.1 TNGTextFormat ... 22

5.2 TNGUnicodeTextFormat ... 23

5.3 TNGBitmapFormat .. 24

5.4 TNGDibFormat ... 24

5.5 TNGEnhMetafileFormat .. 25

5.6 TNGMetafilePictFormat .. 26

5.7 TNGRtfFormat .. 27

5.8 TNGHtmlFormat .. 27

5.9 TNGUrlFormat .. 28

5.10 TNGUrlWFormat .. 28

5.11 TNGHDropFormat .. 29

5.12 TNGFileDescriptorFormat ... 29

5.13 TNGFileContentsFormat .. 30

5.14 Custom Formats ... 31

Index 0

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Overview

6

NG Drag&Drop Guide © 2018 LMD Innovative

Overview

1 Overview

LMD NG Drag&Drop is a part of Next Generation (NG) package suite. All these packages are based on
new IDE and language features of latest Delphi IDE versions.

NG Drag&Drop provides the ability to exchange data with other applications via standard Windows OLE
drag&drop protocol. There are a lot of common applications, which uses Windows drag&drop:

· Windows Explorer (shell) - allows to drag/receive real or virtual file objects.
· MS Office application (Word, Excel, Outlook, ect), WordPad, other text editors - allows to drag/receive

ANSI, Unicode, RTF and HTML text data, images, metafiles, files.
· Internet Browsers (Internet Explorer, Google Chrome, ect) - allows to drag/receive URLs (to open new

page or as a bookmark), text (as search query to open new page), files (as downloads).
· Adobe Photoshop - allows to drag/receive images.
· many other high quality Windows applications actually support drag&drop.

OLE drag&drop protocol declares two sides, which participate in data exchange:

· Source side provides the data and initiate data dragging. Please look at Data Dragging as Source
section.

· Target side receives dragging data, and handle data drop. Please look at Data Accepting as Target
section.

NG Drag&Drop supports both sides, and so, the application, which uses the package, can act as data
source or (and) as data target. Dragging data is called data object, and its a collection of user data
stored in predefined formats. There are a lot of standard data formats, which allows to send/receive
text, RTF, HTML, images, files, URLs, and are built-in NG Drag&Drop package. The following
standard/common formats are implemented:

· CF_TEXT and CF_UNICODETEXT - for dragging ANSI and Unicode text data.
· CF_BITMAP and CF_DIB - for dragging bitmaps.
· CF_ENHMETAFILE and CF_METAFILEPICT - for dragging Windows metafiles.
· RTF - for RTF text.
· HTML - for HTML text.
· INETURLA and INETURLW - for ANSI and Unicode URLs.
· CF_HDROP - for dragging real existing files.
· FILEDESCRIPTOR and FILECONTENTS - for dragging virtual files.

Users application, acting as a data source, can configure data object to include any desired combination
of data formats. As well, application acting as a target can support any desired formats combination,
accepting only required formats.

NG Drag&Drop provides a way for declaring custom formats. Custom formats have they own unique
names, and mostly used inside the application to transfer specifically formatted application data or to
prevent other applications to receive dragging data. Custom formats can be implemented on top of any
other built-in formats, just overriding format's name; or, from the scratch, by overriding data reading
and writing methods.

Please look at Data Formats section to learn more about supported data formats.

Components

7

NG Drag&Drop Guide © 2018 LMD Innovative

Overview

NG Drag&Drop include the following components, accessible from the Delphi's component palette at
design-time:

· TNGDropSource - allows to configure dragging data and initiate drag&drop operation (source side).
· TNGDropTarget - allows to receive dragging data by registering some application's control as a drop

target and providing related events like OnDragEnter, OnDragOver, OnDragLeave, OnDrop; and a
single OnDragAction event, which can be used instead of all previously mentioned events to simplify
code.

Also, each supported data format is represented as a class descendant from TNGDataFormat base class,
for example, TNGTextFormat, TNGUnicodeTextFormat, TNGBitmapFormat, ect. Moreover, each built-in
data format class has its shortcut alias like CF.TEXT, CF.UNICODETEXT, CF.BITMAP, which are declared
to make user's code more understandable.

Fluent Interface

NG Drag&Drop provides Fluent Interface API , which is an easy and very convenient way for supporting
drag&drop operations, without placing any component on the form. API supports both source and target
parts. For example, data dragging (source part) can be initiated as follows:

NGDropSource.AddText('My text')

 .AddUnicodeText('My text')

 .Execute;

Features

Following is a short feature list of NG Drag&Drop package:

· TNGDropSource component, which allows to drag data from customer's application to any other
drag&drop enabled applications.

· TNGDropTarget component, which allows to receive data from any drag&drop enabled application.
· Formal dealing of data formats. Any data drag operation can include any number of formats in

dragged data object. There no restrictions of format combinations used. Any drop target as well can
be configured to accept any combination of data formats.

· Built-in standard and common formats implementation:
o CF_TEXT

o CF_UNICODETEXT

o CF_BITMAP

o CF_DIB

o CF_ENHMETAFILE

o CF_METAFILEPICT

o RTF

o HTML

o INETURLA (Ansi)

o INETURLW (Unicode)
o CF_HDROP

o FILEDESCRIPTOR

o FILECONTENTS

· TNGDataFormat base data format class can be subclassed for advanced implementation of complex
custom formats. Simple custom formats could be defined declaratively on the top of any existing
format class using CustomFormat attribute.

· Data format types shortcuts, such as CF.TEXT for TNGTextFormat, or CF.RTF for TNGRtfFormat.

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Data Dragging as Source

10

NG Drag&Drop Guide © 2018 LMD Innovative

Data Dragging as Source

2 Data Dragging as Source

Configuring Dragging Data

TNGDropSource component allows to initiate dragging operation. Dragging data should be configured
first using TNGDropSource.Data property. The property provide access to TNGSourceData object, which
declares many methods to manipulate dragging data: Add, AddText, AddUnicodeText, AddBitmap,
AddDib, Clear, Remove, HasFormat, HasAny, Count and Items.

The most important methods are Add and AddXXX methods, which allows to add some data to drop
source. Formally, any data can be added via Add method using required data format class:

NGDropSource1.Data.Add(TNGTextFormat.Data('My dragging text'));

Since built-in formats has shortcuts in the form of CF.XXX, the code can be clarified:

NGDropSource1.Data.Add(CF.TEXT.Data('My dragging text'));

Moreover, special AddXXX methods are provided for some formats to make code even more simpler:

NGDropSource1.Data.AddText('My dragging text');

To provide high level of control, NG Drag&Drop allows to work with data formats formally, independently
and explicitly. So, any combination of required data formats can be added to dragging data:

NGDropSource1.Data.Add(CF.URL.Data('http://www.google.com'));

NGDropSource1.Data.AddText('http://www.google.com');

NGDropSource1.Data.AddUnicodeText('http://www.google.com');

NGDropSource1.Data.Add(CF.FILEDESCRIPTOR.Data(...));

NGDropSource1.Data.Add(CF.FILECONTENTS.Data(...));

The above example shows dragging data configuration to allow dragging URL to browser (via CF.URL
format), text editors (via CF.TEXT and CF.UNICODETEXT formats) and to Windows file explorer, creating
a file link to web page (via CF.FILEDESCRIPTOR and CF.FILECONTENTS) formats. Please look at Data
Formats section for more information about data supported formats.

Performing Drag&Drop Operation

After source data has been configured the drag&drop operation can be executed. To begin drag&drop
operation Execute method of TNGDropSource component should be called:

NGDropSource1.Execute;

The method acts like modal dialogs executing methods and do not return until the drag&drop operation
ends. Typically, drag&drop operation should be started from some control's OnMouseDown event handle,
that is, when the mouse button is down. In usual cases its not a good idea to initiate drag&drop
operation from OnClick event handler, because at this point mouse button is already up.

procedure TForm1.Panel1MouseDown(Sender: TObject; Button: TMouseButton;

 Shift: TShiftState; X, Y: Integer);

begin

 NGDropSource1.Data.AddText('My dragging text');

 NGDropSource1.Execute;

end;

11

NG Drag&Drop Guide © 2018 LMD Innovative

Data Dragging as Source

NG Drag&Drop provides automatic detecting of mouse buttons state change; it remembers the state at
the beginning of the drag and cancel drag&drop operation, if state is changed. This default algorithm can
be customized using OnQueryContinueDrag event.
Also, drag&drop operation is canceled when Escape key is pressed.

Usually, dragging data is configured for each drag&drop operation independently, so, TNGDropSource
component provides AutoClear property, which is set to True by default, and forces the component to
clear dragging data after each Execute method call.

Execute method allows to specify allowed drop effects, which can include deMove, deCopy or deLink. If
the parameter is omitted, all of these effects are allowed. The method returns the actual effect, which
has been chosen by the target during drag&drop operation, or - deNone, if the operation has been
canceled. To learn more about drop effects please read Drop Effects section.

Fluent Interface

Since drag&drop operation executions are usually tiny and contains only few lines of code, NG Drag&Drop
provides special API for executing drag&drop operations even without placing the component on the
form. The API is provided by NGDropSource global function, which returns special
TNGDropSource.TBuilder object and can be used like this:

NGDropSource.AddText('My dragging text')

 .AddUnicodeText('My dragging text')

 .Execute;

It contains, actually, the same Add, AddXXX and Execute methods as in previously discussed
TNGDropSource component.

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Data Accepting as Target

14

NG Drag&Drop Guide © 2018 LMD Innovative

Data Accepting as Target

3 Data Accepting as Target

Accepting data

TNGDropTarget component allows to accept dragging data. the component provides Control property,
which should be set to link to some TWinControl placed on the form. After that, this control become
registered as a drag&drop target, and can accept data when the data dragged over this control.
TNGDropTarget component provides a lot of events for controlling current drag&drop operation:

· OnDragEnter event is fired when the mouse cursor enter the control area.
· OnDragOver event is fires when the mouse cursor moves over the control area.
· OnDragLeave event is fired when the mouse cursor leaves the control area.
· OnDrop event is fired when the user drops dragging data (e.g. when he release mouse button).

All these events declares "C" parameter of type TNGTargetContext, which contains all information about
current drag&drop operation state, and provides methods and properties to accept or reject dragging
data. The following members can be used to query current drag&drop operation state:

· C.Action property determines current drag action: daEnter, daOver, daLeave or daDrop.
· C.KeyState property allows to determine, which mouse buttons are currently down and whether Shift,

Ctrl or Alt keys are pressed.
· C.CursorPos property allows to determine current mouse cursor position in screen coordinates.
· C.Allowed property provides access to allowed drop effects, which has been specified by the

operation source side. In daDrop action this property specifies currently accepted drop effect; please
read below. To learn more about drop effects please read Drop Effects section.

· C.Data property provides access to TNGTargetData object, which can be used to query currently
dragging data. The data contains a lot of properties and methods, like: HasFormat, HasAny, Formats,
FormatName, AsFormat, AsText, AsUnicodeText, AsBitmap, ect.

Based on information, provided by the properties described above, the code in event handlers should
decide, whether to accept data or not. If dragging data should be accepted by current drop target,
C.Accepted context property should be set to preferred drop effect. the following rules apply to
C.Accepted and C.Allowed properties in different drag&drop events:

· daEnter (OnDragEnter) - C.Allowed is set to allowed by the source drop effects. C.Accepted is set
to deNone initially, and can be changed inside event handler; however, its value is not really used,
because, for simplicity, OnDragOver event is fired immediately after OnDragEnter.

· daOver (OnDragOver) - C.Allowed is set to allowed by the source drop effects. C.Accepted is set to
deNone initially, and can be changed inside event handler; this value is used to setup mouse cursor to
indicate current accept state.

· daLeave (OnDragLeave) - C.Allowed is set to allowed by the source drop effects. C.Accepted is set
to deNone, and cannot be changed inside event handler. C.Data is also not accessible in this event.

· daDrop (OnDrop) - C.Allowed is set to previously chosen in the OnDragOver event drop effect.
C.Accepted is also set to this drop effect initially and cannot be changed.

These rules implies the following: C.Accepted should be really set only in daOver (OnDragOver) event.
daDrop (OnDrop) - will not be fired is the data is not accepted, e.g. C.Accepted = deNone.

Since C.Accepted property cannot be set to value not included in C.Allowed property, its tricky to
specify value for it manually. So, TNGTargetContext class provides a set of overloaded Accept methods,
which takes different parameters and can be used to simplify code. In simplest form Accept method can
take no parameters, which means that it accept data without any condition choosing from allowed drop

15

NG Drag&Drop Guide © 2018 LMD Innovative

Data Accepting as Target

effects automatically, based on currently pressed keys (Shift, Ctrl, Alt). To learn more about drop effects
please read Drop Effects section.

TNGDropTarget component also provides OnDragAction event, which can be used instead of previously
described events, and allows to simlify source code by having whole drag&drop related code inside a
single event.

Lets now show an example of data accepting using OnDragAction event. The simplest case will look like:

procedure TForm1.NGDropTarget1DragAction(Sender: TObject; C: TNGTargetContext);

begin

 case C.Action of

 daOver: if C.Data.HasFormat(CF.TEXT) then

 C.Accept;

 daDrop: Edit1.Text := C.Data.AsText;

 end;

end;

Accept Helper Methods

TNGTargetContext object provides a set of overloaded Accept helper methods. The simplest case
without any parameters was discussed above. All of these methods was specifically designed to allow
very easy implementation of drop target event handlers. To get the impression of how they simplify code,
lets write another example:

procedure TForm1.NGDropTarget1DragAction(Sender: TObject; C: TNGTargetContext);

var

 s: AnsiString;

begin

 if C.AcceptText(s) then

 Edit1.Text := s;

end;

That's all. No even "case C.Action of" is really required. The following rules are applied to C.Accept
helper methods to allow such a simple code writing:

· All these methods has Accepted parameter, which specifies possible accepted drop effects, but can be
omitted, since it has a default value, indicating that all possible drop effects can be accepted. To learn
more about drop effects please read Drop Effects section.

· If the data should be accepted, all these methods sets C.Accepted to appropriate value, which is
determined automatically, based on C.KeyState, C.Allowed and method's Accepted parameter
value.

· In actions other than daDrop, all these methods returns False, independently of whether the data
can be accepted or not; and return True only if the data has been really accepted (in daDrop event
only). They has been specially implemented in this way to support the following usage scenario:

procedure TForm1.NGDropTarget1DragAction(Sender: TObject; C: TNGTargetContext);

var

 s: AnsiString;

 us: string;

begin

 if C.AcceptUnicodeText(us) then

 Edit1.Text := s

 else if C.AcceptText(s) then

 Edit1.Text := s

end;

16

NG Drag&Drop Guide © 2018 LMD Innovative

Data Accepting as Target

That is:
· in daOver event both formats (CF.TEXT and CF.UNICODETEXT) have a chance to be accepted.
· In daDrop event, Unicode text (if available in dragging data) will be preferred to ANSI text.

Please note, that C.Accept helper methods has been designed to simplify code in simple cases. In more
advances cases, all other methods, described below can be used explicitly.

Fluent Interface

Dragging data acceptance can be tiny as well as drag&drop operations execution. For such cases NG
Drag&Drop provides special API for configuring drop targets even without placing the component on the
form. The API is provided by NGDropTarget global function, which returns special
TNGDropTarget.TBuilder object and can be used like this:

procedure TForm6.FormCreate(Sender: TObject);

begin

 NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

 var

 s: AnsiString;

 begin

 if C.AcceptText(s) then

 Edit1.Text := s;

 end);

end;

procedure TForm6.FormDestroy(Sender: TObject);

begin

 NGDropTarget.Unregister(MyTargetPanel);

end;

NGDropTarget.Register method can be used to register some TWinControl as a drop tasrget, and its
usually called from OnFormCreate event handler. Do not forget to unregister drop target calling
NGDropTarget.Unregister method eventually.

Drop Effects

18

NG Drag&Drop Guide © 2018 LMD Innovative

Drop Effects

4 Drop Effects

When the data is dragged over some drag&drop target, the target should accept or reject the data. But,
in OLE drag&drop its not just a Boolean value, the target should specify which drop effect it prefers. The
following drop effects are predefined by OLE drag&drop interface:

· Move (deMove) - data is moved from one place to another, or from one application to another. After
successful drag&drop operation initial data should be removed.

· Copy (deCopy) - data is copied from one place to another, or from one application to another. After
successful drag&drop operation initial data should not be removed, and two copies of data should exist
as a result.

· Link (deLink) - some sort of link to initial data should be created as a result of successful drag&drop
operation.

· None (deNone) - target do not accept dragging data.

Most people are familiar with drop effects, because they are used in Windows Explorer when dragging
files. If the file is simply dragged it will be moved from one location to another. If the user holds Ctrl key
pressed, mouse cursor include "+" glyph to indicate that dragging file will be copied. As well, if the user
holds Ctrl+Shift keys pressed, a link to dragging file will be created.

The same thing actually happens when the user drag selected text from WordPad to Word, for example.
If the Ctrl key is not pressed the text will be "moved" from one application to another, disappearing in the
initial application. Of course, what is really happens, is that receiving application adds dragging text to its
document, and then sending (source) application remove dragged text from its document.

Some applications can restrict possible drop effects. For example, bookmarks in Google Chrome can not
be copied, they can be only moved.

When initiating drag&drop operation, the source side should specify, which drop effects are allowed for
this operation. TNGDropSource.Execute method allows to specify allowed drop effects using its Allowed
parameter. If the value for this parameter is not provided, all drop effects will be allowed.
If the target side want to accepts dragging data it should choose one drop effect from allowed effects to
indicate data acceptance. Context's C.Accepted property should be set to chosen drop effect or to
deNone, if the target do not accept dragging data.
After dragging data has been accepted and dropped on the target, TNGDropSource.Execute returns and
provide the final drop effect, chosen by the target, as a result value.

Choosing drop effect can be tricky task for target, since it need to analyze provided by the source allowed
drop effects, analyze C.KeyState, analyze its own possibilities (e.g. whether it can support, for example,
deLink at all). So, NG Drag&Drop provides helper Accept methods, which can simplify the task. Accept
methods provide Accepted parameter, which can be used to specify, which drop effects are supported
by the target. If the parameter value is not specified, all drop effects will be accepted.

NG Drag&Drop use the following algorithm to choose drop effect:

· Intersect allowed by the source drop effects with supported by the target.
· If intersected effects include deLink, and Ctrl+Shift keys are pressed, then the resulting drop effect is
deLink.

· Otherwise, if intersected effects include deCopy, and Ctrl key is pressed, then the resulting drop effect
is deCopy.

· Otherwise, if intersected effects include deMove, then the resulting drop effect is deMove.
· Otherwise, if intersected effects include deCopy, then the resulting drop effect is deCopy, even if no

keys are pressed.

19

NG Drag&Drop Guide © 2018 LMD Innovative

Drop Effects

· Otherwise, if intersected effects include deLink, then the resulting drop effect is deLink, even if no
keys are pressed.

· Otherwise the resulting drop effect is deNone.

So, in very simple case C.Accept method can be called to accept dragging data without worrying about
effects, and NG Drag&Drop will choose appropriate drop effect automatically. In more advanced cases,
when the application wants to customize the above algorithm, it should set the value of C.Accepted
property manually, without using Accept helper methods.

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Data Formats

22

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

5 Data Formats

To transfer data between applications the data should be formatted in memory in some standard way to
allow different applications understand each other. NG Drag&Drop provides support for most standard
and common data formats, used in OLE drag&drop to drag and receive data to/from many Windows
applications. This includes text, RTF, HTML, pictures, URLs, files data and more.

Typically single drag&drop operation transfer data object, which contain data in several data formats
simultaneously. For example, CF_TEXT and CF_UNICODETEXT data are commonly transferred together to
support both: Unicode and non-Unicode applications. As well, some formats are specially designed to be
used together, like FILEDESCRIPTOR and FILECONTENTS formats, which are used to drag/receive virtual
files. Unlike most other libraries, NG Drag&Drop allow to work with formats formally, by providing the
possibility to include any combination of data formats into single drag&drop operation.

In NG Drag&Drop each data format is represented by a class descendant from TNGDataFormat base
class. Following is a list of all built-in data formats:

· TNGTextFormat
· TNGUnicodeTextFormat
· TNGBitmapFormat
· TNGDibFormat
· TNGEnhMetafileFormat
· TNGMetafilePictFormat
· TNGRtfFormat
· TNGHtmlFormat
· TNGUrlFormat
· TNGHDropFormat
· TNGFileDescriptorFormat and TNGFileContentsFormat

As well, NG Drag&Drop provides the ability to declare custom data formats. This feature can be used to
implement application's private drag&drop formats or to implement missing commonly used formats. To
learn about custom data formats please read the Custom Formats section.

NG Drag&Drop demo includes a feature to enumerate data formats in currently dragged data object. This
feature can be used to learn, which applications supports which data formats.

5.1 TNGTextFormat

TNGTextFormat class implements standard CF_TEXT data format and allows to drag/receive ANSI text
data. NG Drag&Drop use AnsiString standard Delphi type for working with ANSI text data.

The class declares two methods: Data and Ref. Data method can be used to drag text data at the
source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF.TEXT to make user's code more readable:

23

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

NGDropSource.Add(CF.TEXT.Data('My dragging text'))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: AnsiString;

begin

 if C.Accept(CF.TEXT.Ref(@s)) then

 Edit1.Text := string(s);

end);

Moreover, special methods are declared for working with text data, which can simplify code even more:

NGDropSource.AddText('My dragging text')

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: AnsiString;

begin

 if C.AcceptText(@s) then

 Edit1.Text := string(s);

end);

5.2 TNGUnicodeTextFormat

TNGUnicodeTextFormat class implements standard CF_UNICODETEXT data format and allows to
drag/receive Unicode text data. NG Drag&Drop use string standard Delphi type for working with Unicode
text data.

The class declares two methods: Data and Ref. Data method can be used to drag text data at the
source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF.UNICODETEXT to make user's code more readable:

NGDropSource.Add(CF.UNICODETEXT.Data('My dragging text'))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: string;

begin

 if C.Accept(CF.UNICODETEXT.Ref(@s)) then

 Edit1.Text := s;

end);

Moreover, special methods are declared for working with text data, which can simplify code even more:

NGDropSource.AddUnicodeText('My dragging text')

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: string;

begin

 if C.AcceptUnicodeText(@s) then

 Edit1.Text := s;

end);

24

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

5.3 TNGBitmapFormat

TNGBitmapFormat class implements standard CF_BITMAP data format and allows to drag/receive
bitmaps. NG Drag&Drop use TBitmap standard Delphi type for working with bitmap data.

The class declares two methods: Data and Ref. Data method can be used to drag image data at the
source side, while Ref method can be used to receive images at the target side. NG Drag&Drop declares
special type alias CF.BITMAP to make user's code more readable:

NGDropSource.Add(CF.BITMAP.Data(b))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 b: TBitmap;

begin

 b := Tbitmap.Create;

 try

 if C.Accept(CF.BITMAP.Ref(b)) then

 ShowBitmap(b);

 finally

 b.Free;

 end;

end);

Moreover, special methods are declared for working with bitmap data, which can simplify code even
more:

NGDropSource.AddBitmap(b)

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 b: TBitmap;

begin

 b := Tbitmap.Create;

 try

 if C.AcceptBitmap(b) then

 ShowBitmap(b);

 finally

 b.Free;

 end;

end);

5.4 TNGDibFormat

TNGDibFormat class implements standard CF_DIB data format and allows to drag/receive device
independed bitmaps. NG Drag&Drop use TBitmap standard Delphi type for working with bitmap data.

The class declares two methods: Data and Ref. Data method can be used to drag image data at the
source side, while Ref method can be used to receive images at the target side. NG Drag&Drop declares
special type alias CF.DIB to make user's code more readable:

25

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

NGDropSource.Add(CF.DIB.Data(b))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 b: TBitmap;

begin

 b := Tbitmap.Create;

 try

 if C.Accept(CF.DIB.Ref(b)) then

 ShowBitmap(b);

 finally

 b.Free;

 end;

end);

Moreover, special methods are declared for working with bitmap data, which can simplify code even
more:

NGDropSource.AddDib(b)

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 b: TBitmap;

begin

 b := Tbitmap.Create;

 try

 if C.AcceptDib(b) then

 ShowBitmap(b);

 finally

 b.Free;

 end;

end);

5.5 TNGEnhMetafileFormat

TNGEnhMetafileFormat class implements standard CF_ENHMETAFILE data format and allows to
drag/receive Windows GDI metafiles. NG Drag&Drop use TMetafile standard Delphi type for working
with metafile data.

The class declares two methods: Data and Ref. Data method can be used to drag metafile data at the
source side, while Ref method can be used to receive metafiles at the target side. NG Drag&Drop
declares special type alias CF.ENHMETAFILE to make user's code more readable:

26

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

NGDropSource.Add(CF.ENHMETAFILE.Data(m))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 m: TMetafile;

begin

 m := TMetafile.Create;

 try

 if C.Accept(CF.ENHMETAFILE.Ref(m)) then

 ShowMetafile(m);

 finally

 m.Free;

 end;

end);

Moreover, special methods are declared for working with bitmap data, which can simplify code even
more:

NGDropSource.AddEnhMetafile(m)

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 m: TMetafile;

begin

 m := TMetafile.Create;

 try

 if C.AcceptEnhMetafile(m) then

 ShowMetafile(m);

 finally

 m.Free;

 end;

end);

5.6 TNGMetafilePictFormat

TNGMetafilePictFormat class implements standard CF_METAFILEPICT data format and allows to
drag/receive old style Windows metafiles. NG Drag&Drop use TMetafile standard Delphi type for
working with metafile data.

The class declares two methods: Data and Ref. Data method can be used to drag metafile data at the
source side, while Ref method can be used to receive metafiles at the target side. NG Drag&Drop
declares special type alias CF.METAFILEPICT to make user's code more readable:

27

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

NGDropSource.Add(CF.METAFILEPICT.Data(m))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 m: TMetafile;

begin

 m := TMetafile.Create;

 try

 if C.Accept(CF.METAFILEPICT.Ref(m)) then

 ShowMetafile(m);

 finally

 m.Free;

 end;

end);

5.7 TNGRtfFormat

TNGRtfFormat class implements common RTF data format and allows to drag/receive Rich Text Format
data. As specified, RTF data is sequence of 7-bit ASCII chars, and so, NG Drag&Drop use
RawByteString standard Delphi type for working with RTF.

The class declares two methods: Data and Ref. Data method can be used to drag RTF data at the
source side, while Ref method can be used to receive RTF at the target side. NG Drag&Drop declares
special type alias CF.RTF to make user's code more readable:

NGDropSource.Add(CF.RTF.Data(s))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: RawByteString;

begin

 if C.Accept(CF.RTF.Ref(@s)) then

 ShowRtf(s);

end);

Please look at provided demo project to understand how to get RTF data from TRichEdit Delphi
component, and how to set it back.

5.8 TNGHtmlFormat

TNGHtmlFormat class implements common HTML data format and allows to drag/receive HTML data. NG
Drag&Drop use string standard Delphi type for working with HTML.

The class declares two methods: Data and Ref. Data method can be used to drag HTML data at the
source side, while Ref method can be used to receive HTML at the target side. NG Drag&Drop declares
special type alias CF.HTML to make user's code more readable:

28

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

NGDropSource.Add(CF.HTML.Data(s))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: string;

begin

 if C.Accept(CF.HTML.Ref(@s)) then

 ShowHtml(s);

end);

HTML format is bit tricky, and contain special text headers, so please look MSDN Documentation to
understand it. NG Drag&Drop does not add/parse such header data internally, so it should be added
manually.
Please, look at provided demo project to understand how to work with HTML data format.

5.9 TNGUrlFormat

TNGUrlFormat class implements common URL data format and allows to drag/receive ANSI URLs. NG
Drag&Drop use AnsiString standard Delphi type for working with ANSI URLs.

The class declares two methods: Data and Ref. Data method can be used to drag URL data at the
source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF.URL to make user's code more readable:

NGDropSource.Add(CF.URL.Data('http://google.com'))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: AnsiString;

begin

 if C.Accept(CF.URL.Ref(@s)) then

 Edit1.Text := string(s);

end);

5.10 TNGUrlWFormat

TNGUrlWFormat class implements common URL data format and allows to drag/receive Unicode URLs.
NG Drag&Drop use string standard Delphi type for working with Unicode URLs.

The class declares two methods: Data and Ref. Data method can be used to drag URL data at the
source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF.URLW to make user's code more readable:

NGDropSource.Add(CF.URLW.Data('http://google.com'))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: string;

begin

 if C.Accept(CF.URLW.Ref(@s)) then

 Edit1.Text := s;

end);

29

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

5.11 TNGHDropFormat

TNGHDropFormat class implements standard CF_HDROP data format and allows to drag/receive really
existing files. NG Drag&Drop use TNGStrArray type, which is a dynamic array of string, for working with
CF_HDROP data. The data should contain one or more really existing file paths.

The class declares two methods: Data and Ref. Data method can be used to drag file paths data at the
source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF.HDROP to make user's code more readable:

SetLegnth(s, 3);

s[0] := 'c:\MyText1.txt';

s[0] ;= 'c:\MyText2.txt';

s[0] := 'c:\MyText3.txt';

NGDropSource.Add(CF.HDROP.Data(s))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: TNGStrArray;

begin

 if C.Accept(CF.HDROP.Ref(@s)) then

 ShowFiles(s);

end);

5.12 TNGFileDescriptorFormat

TNGFileDescriptorFormat class implements common FILEDESCRIPTOR data format and allows to
drag/receive virtual files created on-the-fly from any data stream. NG Drag&Drop use special
TNGFileArray type, which is a dynamic array of special TNGFileDescriptor records, for working with
FILEDESCRIPTOR data. Please note that this format is specially designed to be used together with
TNGFileContentsFormat format. While this format provide descriptions (like names, sizes, file dates and
attributes) of dragging virtual files, TNGFileContentsFormat provides data streams for dragging virtual
files.

TNGFileDescriptor record allows to specify the following file properties:

· Name - the name of file, like 'MyText.txt'
· Clsid - is the special GUID like identifier for special file system objects, like "Recycle Bin". Please read

MSDN documentation.
· Attributes - file attributes, like for any other file.
· CreationTime, LastAccessTime, LastWriteTime - file times.
· Size - the size of corresponding data stream, in bytes.
· Flags - this property indicates, which other properties has been specified. A flag is set up

automatically, when the corresponding property value is assigned. Actually, only Name property is
required to be specified, all other properties are optional.

The class declares two methods: Data and Ref. Data method can be used to drag virtual files at the
source side, while Ref method can be used to receive files data data at the target side. NG Drag&Drop
declares special type alias CF.FILEDESCRIPTOR to make user's code more readable:

30

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

SetLegnth(d, 1);

d[0].Name := 'c:\MyText1.txt';

d[0].Size := 10;

NGDropSource.Add(CF.FILEDESCRIPTOR.Data(d))

 .Add(CF.FILECONTENTS.Data(...))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 d: TNGFileArray;

 cnt: TNGFileContents;

begin

 if C.Accept(CF.FILEDESCRIPTOR.Ref(@d)) and

 C.Accept(CF.FILECONTENTS.Ref(@cnt)) then

 ShowFiles(d);

end);

5.13 TNGFileContentsFormat

TNGFileContentsFormat class implements common FILECONTENTS data format and allows to
drag/receive virtual files created on-the-fly from any data stream. NG Drag&Drop use array of IStream
type at the source side, and a special TNGFileContents record, which allows to query IStream for each
file, at the target side. Please note that this format is specially designed to be used together with
TNGFileDescriptorFormat format. While TNGFileDescriptorFormat format provide descriptions (like
names, sizes, file dates and attributes) of dragging virtual files, this format provides data streams for
dragging virtual files. please also note, that TNGFileContents record has no Count property, since the
count of dragging files should be determined from the corresponding TNGFileDescriptorFormat data.

The class declares two methods: Data and Ref. Data method can be used to drag virtual files at the
source side, while Ref method can be used to receive files data data at the target side. NG Drag&Drop
declares special type alias CF.FILECONTENTS to make user's code more readable:

SetLength(cnt, 1);

cnt[0] := TStreamAdapter.Create(MyFileStream, soOwned);

NGDropSource.Add(CF.FILEDESCRIPTOR.Data(...))

 .Add(CF.FILECONTENTS.Data(cnt))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 d: TNGFileArray;

 cnt: TNGFileContents;

 s: TStream;

begin

 if C.Accept(CF.FILEDESCRIPTOR.Ref(@d)) and

 C.Accept(CF.FILECONTENTS.Ref(@cnt)) then

 begin

 s := TOleStream.Create(cnt[0]);

 ShowFileContent(s);

 s.Free;

 end;

end);

TStreamAapter standard Delphi class can be used to convert any usual TStream to OLE IStream. Please
note, that the resulting IStream object is referenced by OLE and its actually unknown, when it will be

31

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

released. So, its recommended to use soOwned value in the TStreamAapter constructor call to allow
resulting IStream own initial TStream object.
To convert IStream back to TStream at the target side, TOleStream standard Delphi class can be used.

5.14 Custom Formats

NG Drag&Drop provides the ability to declare custom data formats. This feature can be used to
implement application's private drag&drop formats or to implement missing commonly used formats.

An easy way to declare custom format based on some predefined format is to use
CustomFormatAttribute attribute. A custom format should have its own unique name, which is used to
register the format in the system:

type

 [CustomFormat('My Unique Format Name')]

 TMyFormat = class(TNGTextFormat);

That it! The custom format is declared. And so, it can be used like any other data format:

NGDropSource.Add(TMyFormat.Data('My dragging text'))

 .Execute;

NGDropTarget.Register(MyTargetPanel, procedure(C: TNGTargetContext)

var

 s: AnsiString;

begin

 if C.Accept(TMyFormat.Ref(@s)) then

 Edit1.Text := string(s);

end);

Advanced users can also implement custom formats descending the class directly from TNGDataFormat
base class, just like built-in formats are implemented. This way the user have to deal with some low-
level OLE drag&drop stuff, for example, TStgMedium and TFormatEtc WinAPI structures, which are out
of current documentation scope. The source code in NG.DragDrop.Formats.pas unit, where all built-in
formats are declared can be used as a reference implementation.

	Table of Contents
	Overview
	Data Dragging as Source
	Data Accepting as Target
	Drop Effects
	Data Formats
	TNGTextFormat
	TNGUnicodeTextFormat
	TNGBitmapFormat
	TNGDibFormat
	TNGEnhMetafileFormat
	TNGMetafilePictFormat
	TNGRtfFormat
	TNGHtmlFormat
	TNGUrlFormat
	TNGUrlWFormat
	TNGHDropFormat
	TNGFileDescriptorFormat
	TNGFileContentsFormat
	Custom Formats

