
®

NG SerializationPack Guide

USER MANUAL

© 2018 LMD Innovative
LMD Innovative

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

3

NG SerializationPack Guide © 2018 LMD Innovative

Table of Contents

1. Overview 5

2. Introduction 7

3. Inheritance 13

4. Fill-Read Mode 19

5. Custom Converters 23

Index 0

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Overview

6

NG SerializationPack Guide © 2018 LMD Innovative

Overview

1 Overview

LMD NG SerializationPack is a part of Next Generation (NG) package suite. All these packages are based
on new IDE and language features of latest Delphi IDE versions.

NG SerializationPack provides the ability to serialize/de-serialize Delphi objects into various storage
formats. This allows to write data handling applications more easily and in more object oriented way.
Common use cases of serialization engine are:

· Saving/loading application options.
· Sending business objects via net between client and server.
· Saving/loading CAD-like application documents, since they are usually represented at run-time as a

tree-like object model.
· ect.

In the current version the following formats are supported:
· XML via Delphi standard XML access, e.g. IXmlDocument, IXmlNode.
· JSON via Delphi standard JSON access, e.g. TJSONValue.
· Binary stream via standard Delphi TStream.
· XML via third party libraries (OmnyXML and NativeXML).
· JSON via third party libraries (SuperObject).
· Other formats, such as storing directly into Windows Registry, ect. are considered for next versions.

Serialization engine is based on the new Delphi RTTI feature. Basically, values of most of Delphi data
types, such as numbers, strings, classes, records or arrays, can be serialized. Special attributes can be
used to annotate types or fields/properties to specify or adjust various aspects of serialization process.

Features

Following is a short feature list of NG SerializationPack package:

· The ability of handling most of Delphi types. Engine does not favor to classes, any type, starting from
primitive types, such as Integer or string, continuing to more complex types, such as records or
arrays, can be serialized/de-serialized.

· Support for serializing class/record fields or properties.
· Full inheritance support.
· The ability of adjusting serialization process using provided attributes, such as
SerializableAttribute, TransientAttribute, AliasAttribute, ect.

· The ability of writing custom converters.
· Support of fill-read mode via FillReadAttribute. This mode allows to de-serialize owned by parent

object sub-objects without re-creating them; that is, instead of usual action sequence, which is to
create new sub-object instance, read its properties and assign this created instance to parent object's
property, fill-read mode use the following action sequence: read parent object's property, and use
read sub-object value to read its properties. This way parent object's property can be even read-only.

Introduction

8

NG SerializationPack Guide © 2018 LMD Innovative

Introduction

2 Introduction

Serialization process is controlled by special serializer/de-serializer objects. Such objects are
implemented for every output format:

· XML serialization is performed by TXmlSerializer and TXmlDeserializer object,
· JSON serialization is performed by TJsonSerializer and TJsonDeserializer object,
· Binary serialization is performed by TBinarySerializer and TBinaryDeserializer objects.

These helper objects should be created (and later destroyed) by the user. Serializer objects descends
from common TSerializer base class, which declare common serialization methods and properties. As
well, de-serializer objects descends from TDeserializer common base class.

The library is designed so, that interfaces of these common base classes are sufficient for most usage,
and its recommended to be used as a parameter types of various custom MySerialize/MyDeserialize
methods. However, its important to note, that format specific serializer objects has some additional, non-
common, stuff. First of all, it constructors, which takes different arguments for different formats. Then,
some additional methods/properties, such as FlushBuffer for binary serializer or RootValue for XML
serializer are also had to be used to achieve format specific needs; however they are designed to be
usable at the same routine level, where serializer objects are created/destroyed.

Following is the very simple example, which shows how to serialize and de-serialize TPoint value using
XML:

Serialize code:

var

 s: TXmlSerializer;

 p: TPoint;

begin

 p.X := 7;

 p.Y := 9;

 s := TXmlSerializer.Create(MyXmlDoc.Node);

 try

 s['MyPoint'].Value<TPoint>(p);

 MyXmlDoc.SaveToFile('...');

 finally

 s.Free;

 end;

end;

Resulting XML:

<MyPoint>

 <X>7</X>

 <Y>9</Y>

</MyPoint>

De-serialize back code:

var

 d: TXmlDeserializer;

 p: TPoint;

begin

 d := TXmlDeserializer.Create(MyXmlDoc.Node);

 try

9

NG SerializationPack Guide © 2018 LMD Innovative

Introduction

 p := d.Value<TPoint>;

 finally

 d.Free;

 end;

end;

What can be serialized

The following types are supported for serialization:

· All numeric types, including integer types as well as floating point types.
· String types, such as AnsiString, WideString, UnicodeString, ect.
· Char types, such as AnsiChar, WideChar, Char, ect.
· Records: all public fields and properties are serialized by default; however, this can be overridden,

using SerializableAttribute and TransientAttribute.
· Classes: all public and published fields and properties are serialized by default; however, this can be

overridden, using SerializableAttribute and TransientAttribute. Serialization includes all
inherited fields and properties; however, inherited field and properties can be excluded from
serialization using NoInheritedAttribute. Serializable classes should have public parameter-less
constructor; it is used by serialization engine to create new object instance while de-serializing object
values.

· Enumerations, sets.
· Arrays: both static and dynamic arrays are supported. Multi-dimensional arrays are also supported,

and treated as arrays of arrays.

Following is an example of overriding default serializable status of fields:

type

 TMyObject = class

 protected

 [Serializable]

 s: string; // Will be serialized.

 public

 X: Integer;

 [Transient]

 Y: Integer; // Will not be serialized.

 end;

If only some special fields or properties need to be serialized, the type can be marked with
TransientAttribute as a whole, which will mark all public and published properties to be transient by
default:

type

 [Transient]

 TMyObject2 = class

 public

 X: Integer; // Will not be serialized.

 Y: Integer; //

 [Serializable]

 S: string; // Will be serialized.

 end;

Here, it should be noted, that NG-Serialization engine will only process fields and properties, which are
visible via Delphi RTTI. Delphi, does not generate RTTI for all fields or properties; actually, to use
protected or private ones, the user should use {$RTTI ...} Delphi directive to force Delphi compiler to
include required RTTI.

10

NG SerializationPack Guide © 2018 LMD Innovative

Introduction

Aliasing

Sometimes names of types, fields, properties or even array elements should be changed to improve
readability of human readable output formats, such as XML or JSON. This can be accomplished using
AliasAttribute (ElemAliasAttribute for array elements).

Example:

type

 [ElemAlias('Number')]

 TMyArray = array of Integer;

 TMyObject = class

 public

 [Alias('Numbers')]

 property Arr: TMyArray;

 end;

Resulting XML:

<MyObject>

 <Numbers>

 <Number>3</Number>

 <Number>5</Number>

 <Number>9</Number>

 </Numbers>

</MyObject>

Internal data model

As seen from the example above, the main method to use is the Value method. Note, that it is a
template method and the serialized/de-serialized type should be specified. In current section other useful
serializer/de-serializer methods will be described.

Despite the fact, that the package is made multi-format, it has common internal data model, which is
primarily grabbed from JSON. So, at the core level, serialization engine works with the following data
abstractions:

· Value - can be a simple typed value, for example, Integer or String, or a complex value such as array
or object.

· Object - a complex value, which is a set of properties. Each property has a name and value.
Serialization engine converts Delphi class instances and records to internal objects.

· Array - a complex value, which is a set of elements - an ordered sequence of values, which (unlike
properties) has no names. Serialization engine converts Delphi arrays and collections (via custom
converters) to internal arrays.

Its important to note that the value itself has no name. Actually, the only place where a name is
associated with a value - are object properties. This implies the following very important idea: Root level
values are unnamed in the internal data model. And since the library allows to store more than one
root-level value with a single serializer object (calling Value method several times), such values are
treated sequentially; and, actually, should be read back in the same order. Its important to understand
sequential internal nature of the library.

11

NG SerializationPack Guide © 2018 LMD Innovative

Introduction

However, some formats, such as XML format, requires the name (tag) to be provided for every stored
value; thus, even root-level values or array elements should have a name. The library API include
routines to provide such additional names, however these names are just ignored in more compatible
formats such as binary stream or JSON format. The example of such API is RootValue indexed property
of TXmlSerializer class; in the example above it used implicitly in expression s['MyPoint'], because
its a default Delphi property.

JSON format also conflicts slightly with internal data model. In fact, JSON allows only single root level
value; more than one value cannot be represented with valid JSON string. To overcome this issue, JSON
serializer's constructor takes an address of (array) buffer, into which all root level values are stored. Its
up to the user, of what to do later with those values. However, if a single JOSN value capable to be
converted into valid JSON string is still needed as a result of serialization, the user should wrap several
values into JSON array or object manually, e.g. calling BeginArray/EndArray or
BeginObject/EndObject/Prop methods.

As has been already noted, any single value can be serialized using Value<> method. This case includes
all possible values, even complex values such as objects or arrays. However there is an additional API
which allows to serialize object or array like data without using (declaring) corresponding Delphi types.
This API designed to be used primarily in the following two cases:

· In high level routines, to format data manually; usually the API is used directly in the procedure which
creates/destroys serialization object.

· In custom converters, which are classes descended from TCustomConverter base class.

So, to serialize object like data, BeginObject/EndObject and Prop additional serializer's methods can
be used. The following example, shows how to serialize point data manually, without using TPoint
Delphi type:

Serialize code:

var

 s: TXmlSerializer;

begin

 s := TXmlSerializer.Create(MyXmlDoc.Node);

 try

 s['MyPoint'].BeginObject('', False);

 s.Prop('X').Value<Integer>(7);

 s.Prop('Y').Value<Integer>(9);

 s.EndObject;

 finally

 s.Free;

 end;

end;

Resulting XML:

<MyPoint>

 <X>7</X>

 <Y>9</Y>

</MyPoint>

Note, how RootValue property, which is again used implicitly in s['MyPoint'] expression, is used with
the BeginObject method in a single code line; as well, Prop method is used with Value method in a
single code line also. This is possible because RootValue and Prop always returns Self object which is
serializer, which makes the resulting code more readable.

12

NG SerializationPack Guide © 2018 LMD Innovative

Introduction

So, to serialize array like data, BeginArray/EndArray additional serializer's methods can be used in a
manner similar to manual object data serialization. The following example, shows how to serialize some
integers as an array, without using real array Delphi type:

Serialize code:

var

 s: TXmlSerializer;

begin

 s := TXmlSerializer.Create(MyXmlDoc.Node);

 try

 s['MyArray'].BeginArray('Item');

 s.Value<Integer>(3);

 s.Value<Integer>(7);

 s.Value<Integer>(9);

 s.EndArray;

 finally

 s.Free;

 end;

end;

Resulting XML:

<MyArray>

 <Item>3</Item>

 <Item>7</Item>

 <Item>9</Item>

</MyArray>

The rule with these additional API is that BeginObject/BeginArray methods can be used anywhere the
Value method is used; more precisely, its valid to use them to serialize property values, thus - after a
Prop method call, or, while serializing array elements. So, following this way its possible to have object
or array property values, as well, as array of objects or array of arrays.

Inheritance

14

NG SerializationPack Guide © 2018 LMD Innovative

Inheritance

3 Inheritance

NG-Serialization library supports Object Pascal inheritance. This means the following: if a field (or
property) of some class type TAncestor hold an object value of some another class type TDescendant,
where TDescendant is a descendant of TAncestor, then the field value will be serialized/de-serialized
correctly; that is all serializable properties declared in TDescendant class type will be written in the
output medium, and, as well, the value object of class type TDescendant will be created during de-
serialization, and all its serialized properties will be read back. For example, consider the following type
declarations, and myobj object variable initialization code:

type

 TAncestor = class

 public

 X: Integer;

 end;

 TDescendant = class(TAncestor)

 public

 Y: Integer;

 end;

 TMyObject = class

 public

 O: TAncestor; // The type of the field is TAncestor...

 end;

var

 myobj: TMyObject;

begin

 myobj := TMyObject.Create;

 myobj.o := TDescendant.Create; // ...But, the assigned value

 // is of TDescendant type.

 //...

end;

Serializing myobj using XML serializer will result in the following XML:

<MyObject>

 <O Class="TDescendant">

 <X>0</X>

 <Y>0</Y>

 </O>

</MyObject>

There are three things to note here:

· First, is a Class attribute, which stores property value class name; this value is required to be stored,
because it used while de-serialization process; generally, the class of object value is stored only when
its different from the corresponding field or property type class.

· Second, class name, stored as a Class attribute value can be adjusted using AliasAttibute, making
XML more readable.

· Third, as has been described above, Y field, which is a subclass field, is also stored in XML.

Classes Registration

This section will discuss, how meta-data is used by serialization engine and, why, sometimes, an explicit
classes registration is required.

15

NG SerializationPack Guide © 2018 LMD Innovative

Inheritance

For each serialized/de-serialized type the engine initializes and stores in memory additional information.
This information contains read via RTTI field and property set, serialization related attributes, ect. In
general, this information dramatically improves run-time performance of the engine. Type related meta-
data is initialized lazily and stored in a global dictionary. For following discussion imagine a very simple
serialization case:

s.Value<TPoint>(p);

In the code above, a point, which is a record of TPoint type is serialized. In this a reference to TPoint
type info is explicitly provided to Value template method, so the engine will be able to initialize related
meta-data on-the-fly. Moreover, the type info of all point fields, which are in this case two Integer
fields, are also available from the parent TPoint type info. So, serializing a point this way do not
require to register types explicitly.

The same way meta-data can be initialized during de-serialization:

p := d.Value<TPoint>;

As seen from the code, a reference to TPoint type is provided here too. So, in most cases, including
serializing TMyObject object with TDescendant sub-object from the first example, do not require explicit
types registration.

However, de-serialization of the produced in the first example XML can fail. Consider the following de-
serialization code:

myobj := d.Value<TMyObject>;

In this code TMyObject type info is provided to the engine, however, this type info do not contain a
reference to TDescendant type info, because the field O is, actually, of TAncestor type only. So, in this
case its required to register TDescendant class explicitly. TMetadata class should be used to achieve
this:

TMetadata.RegisterClass(TDescendant);

To register several classes at once TMetadata.RegisterClasses method can be used instead. Usually,
such explicit registration is performed at application startup, for example, in initialization clause of
some application unit.

There is another one use case, where explicit class registration is required. Consider the code:

var

 obj: TObject;

obj := d.Value<TObject>;

if obj is TMyObject then

 ; //...

This code de-serializes an object of TMyObject class, providing just TObject as a template argument for
Value method. Sometimes, code like this is useful, e.g. where no a-priory knowledge about de-
serializing object type exists. Here again, all possible object classes should be registered explicitly.

Default Value Class

16

NG SerializationPack Guide © 2018 LMD Innovative

Inheritance

Recall the XML, produced by the first example:

<MyObject>

 <O Class="TDescendant">

 ...

 </O>

</MyObject>

As seen from XML text, TDescendant value object class is stored in XML as Class attribute. Since in
some human readable formats, like XML or JSON this affects readability, engine stores the name of the
class only when necessary. The same can be said about other formats, such as binary stream; however,
the main goal here is to reduce output stream size.

The default rule is to store class name, if value run-time class is different from field or property class
type. However, this rule can be adjusted using DefClassAttribute, which allows to specify default
class, different from the field or property class type:

type

 TAncestor = class

 public

 X: Integer;

 end;

 TDescendant = class(TAncestor)

 public

 Y: Integer;

 end;

 TMyObject = class

 public

 [DefClass(TDescendant)]

 O: TAncestor; // The type of the field is TAncestor...

 end;

The same rule is applied to root-level object values. For example, consider the code:

s.Value<TMyObject>(obj);

This code will store obj class name, if the object run-time type, which is obj.ClassType, is not equal to
provided (as template argument) TMyObject class.

Suppressing Inherited Fields and Properties

Sometimes it is useful to descend serialization related classes from some other standard or third-party
classes; for example, VCL classes such as TPersistent or TComponent, can be used as ancestors.
Usually, these classes contains huge amount of properties, which, actually, are not intended to be
serialized. Moreover, in such cases serialization engine can raise exceptions, because not all that
properties even can be serialized.

In such situations, all ancestor fields and properties can be suppressed applying NoInheritedAttribute
to the type:

type

 [NoInherited]

 TMyObject = class(TComponent)

 public

17

NG SerializationPack Guide © 2018 LMD Innovative

Inheritance

 X: Integer;

 S: string;

 end;

Inheritance and Custom Converters

Inheritance is not automatically supported with custom converters. So, for example, if TAncestor class
is serialized using custom converter, the implementation of the converter should be aware of all possible
values, including values of TDescendant type (if required, of course); and moreover, the converter
should be able to distinguish these values based on de-serializing information.

Generally, this was a design decision, mainly motivated by the fact, that custom converter can convert an
object value to any type of internal value; for example - to array or just number.

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Fill-Read Mode

20

NG SerializationPack Guide © 2018 LMD Innovative

Fill-Read Mode

4 Fill-Read Mode

In Delphi object oriented programming its common to have sub-objects owned by its parent objects;
such sub-objects commonly created in the corresponding parent object's constructor and destroyed in
parent object's destructor. Usually, they are not re-created during parent object's life time. In some
cases, these sub-objects are exposed via public parent object's property.

There are a lot of examples of such sub-objects in Delphi VCL:

· Font property, which is an object of type TFont.
· Constraints property, which is also an object.
· All collections, such as Items, Lines, ect.

Following is a simple example of declarations containing sub-object property:

type

 TSubObject = class

 public

 X: Integer;

 end;

 TMyObject = class

 private

 FSubObject: TSubObject;

 public

 constructor Create;

 destructor Destroy; override;

 property SubObject: TSubObject read FSubObject;

 end;

constructor TMyObject.Create;

begin

 FSubObject := TSubObject.Create;

end;

destructor TMyObject.Destroy; override;

begin

 FSubObject.Free;

end;

The main problem with these sub-objects is that they cannot be handled by serialization engine as
usually. Its incorrect to assign newly created sub-object instance during de-serialization. Moreover, the
corresponding public property can be read-only at all. So, the example above will not be serializable.

To make the code above serializable, FillReadAttribute should be used. It specifies that serialization
engine should use so-called fill-read mode. Serialization of fill-read properties works the same way as in
normal mode: property value, which is sub-object reference is read and its properties are serialized.
However, de-serialization in fill-read mode works differently:

· Property value, which is sub-object is read from the property.
· And this existing sub-object value is used to de-serialize sub-object properties.

FillReadAttribute can be applied to sub-object property like this:

type

 TMyObject = class

 private

21

NG SerializationPack Guide © 2018 LMD Innovative

Fill-Read Mode

 FSubObject: TSubObject;

 public

 constructor Create;

 destructor Destroy; override;

 [FillRead]

 property SubObject: TSubObject read FSubObject;

 end;

Or, alternatively, it can be applied to sub-object class itself:

type

 [FillRead]

 TSubObject = class

 public

 X: Integer;

 end;

In this case fill-read mode will be used with all properties of TSubObject type. There are several things
should be kept in mind, while applying FillReadAttribute to the whole sub-object type:

· First, this way fill-read mode can't be overridden back to normal mode in descendants; nor it can be
overridden at the property level.

· Second, since serialization engine never attempt to replace an instance of sub-object with another
one, it actually, never create such new instances. Thus, the parameter-less constructor is not required
for serializable classes, which are marked with FillReadAttribute.

Fill-Read Mode with Non-Object Types and Root-Level
Values

For working with values in fill-read more manually, special overload of the de-serializer's Value method
can be used. This method is a procedure, which does not return any value, but instead take a single var
parameter. Use it as follows:

obj := TSubObject.Create;

d.Value<TSubObject>(obj); // Read already created obj in fill-read mode.

Fill-read mode can be used with values of any type, not only object values. There are some restrictions,
depending of type used. For example, it is fully correct to have a dynamic array property marked as fill-
read. Since, dynamic array is a reference type in Delphi, the reference to array data will be read and
filled with de-serializing elements. The restriction here is that array length can't be changed during de-
serialization, because this will cause array data reallocation; so, if de-serializing array element count will
differ from actual dynamic array length, the exception will be raised during de-serialization.

Fill-read mode can be used even with so-called value-types, such as numbers, strings, static arrays or
records. However, the value here should be "L-value", that is it should be possible to take value address.
Following there is a list of cases where it possible:

· Value is a class field.
· Value is field of L-value record.
· Value is an element of L-Value static array.
· Value is a dynamic array element.
· A reference to value is passed to de-serializer's Value method as a var parameter.

Note, that property values are not considered to be L-values.

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Custom Converters

24

NG SerializationPack Guide © 2018 LMD Innovative

Custom Converters

5 Custom Converters

NG-Serialization library provides an ability to change the output representation of serializing value. This
can be done writing custom converter, which is essentially a descendant of TCustomConverter base
class. The converter writer should declare TCustomConverter base class descendant, and override and
implement all its abstract methods:

· GetReadMode method implementation should just return a value indicating in which mode the
converter works: rmNormal for normal mode or rmFillRead for fill-read mode.

· Write method implementation should serialize provided V value using provided S serializer object.
Implementation should use public serializer's methods, such as Value, BeginObject/Prop/EndObject
and BeginArray/EndArray, to serialize V value in a way it wants.

· Read method implementation should de-serialize value using provided D de-serializer object.
Implementation should use public de-serializer's methods, such as HasNext, Value,
BeginObject/EndObject and BeginArray/EndArray, to de-serialize value in a way it wants. If the
converter works in normal mode it should treat V parameter as output parameter and assign de-
serialized value to it. However, if the converter works in fill-read mode it should treat V parameter as
input parameter and use provided V value to fill it with de-serializing information. Thus, V parameter
should never be treated as bi-directional (in-out).

To associate custom converter class with the converted type ConverterAttribute should be used like
this:

type

 TMyCollConverter = class(TCustomConverter)

 public

 function GetReadMode: TReadMode; override;

 procedure Write(S: TSerializer; const V); override;

 procedure Read(D: TDeserializer; var V); override;

 end;

 [Converter(TMyCollConverter)]

 TMyCollection = class

 //...

 end;

Following is a list of potential use-cases where custom converters can be used:

· Collections. Since collections usually represented by objects, there are required to implement custom
converter to serialize collection object as an array of element (items) instead of collection object itself
with all its public properties.

· Variant like data, which can be implemented as a record or an object. Look for example below.
· Serializing references to business objects as the corresponding object's IDs.

Example of Serialization of Variant Like Data

Consider the following declaration:

type

 TMyKind = (mkNull, mkBool, mkInteger, mkString);

 TMyVariant = record

 private

 // Implementation is not shown.

 public

25

NG SerializationPack Guide © 2018 LMD Innovative

Custom Converters

 property Kind: TMyKind read GetKind write SetKind;

 property AsBool: Boolean read GetAsBool write SetAsBool;

 property AsInteger: Integer read GetAsInteger write SetAsInteger;

 property AsString: string read GetAsString write SetAsString;

 end;

As seen from declaration there are no need to serialize all TMyVariant properties, because only one of
tree data properties is matter. So, the custom converter can be used to achieve more readable
serialization result, like this:

<MyVariant>

 <Kind>Integer</Kind>

 <Value>7</Value>

</MyVariant>

Following is a converter code used to achieve above result:

type

 TMyVarConverter = class(TConverter)

 public

 function GetReadMode: TReadMode; override;

 procedure Write(S: TSerializer; const V); override;

 procedure Read(D: TDeserializer; var V); override;

 end;

function TMyVarConverter.GetReadMode: TReadMode;

begin

 Result := rmNormal;

end;

procedure TMyVarConverter.Write(S: TSerializer; const V);

var

 mv: ^TMyVariant;

begin

 mv := @TMyVariant(V);

 S.BeginObject('MyVariant', False);

 S.Prop('Kind').Value<string>(KindToStr(mv.Kind));

 case mv.Kind of

 mkNull: ; // Do nothing.

 mkBool: S.Prop('Value').Value<Boolean>(mv.AsBool);

 mkInteger: S.Prop('Value').Value<Integer>(mv.AsInteger);

 mkString: S.Prop('Value').Value<String>(mv.AsString);

 end;

 S.EndObject;

end;

procedure TMyVarConverter.Read(D: TDeserializer; var V);

var

 mv: TMyVariant;

 tp: string;

begin

 D.BeginObject(tp);

 mv.Kind := StrToKind(D.Prop('Kind').Value<string>);

 case mv.Kind of

 mkNull: ; // Do nothing.

 mkBool: mv.AsBool := D.Prop('Value').Value<Boolean>;

26

NG SerializationPack Guide © 2018 LMD Innovative

Custom Converters

 mkInteger: mv.AsInteger := D.Prop('Value').Value<Integer>;

 mkString: mv.AsString := D.Prop('Value').Value<String>;

 end;

 D.EndObject;

 TMyVariant(V) := mv;

end;

After converter is written is should be associated with TMyVariant class using ConverterAttribute.
Thus, TMyVariant declaration should be changed as follows:

type

 [Converter(TMyVarConverter)]

 TMyVariant = record

 ...

 end;

	Table of Contents
	Overview
	Introduction
	Inheritance
	Fill-Read Mode
	Custom Converters

