NG Drag&Drop Guide

USER MANUAL

© 2018 LMD Innovative
LMD Innovative

This page is intentionallyleft blank.
Remove this text from the manual
template if you wantit completely blank.

Table of Contents

1. Overview 5
2. Data Dragging as Source 9
3. Data Accepting as Target 13
4. Drop Effects 17
5. Data Formats 21
5.1 TNGTEXEFOIMAL ...ceiiiiiiieiirieiereniereeeereneeereeeeresieressesssserensssssssssasserassessssesenssssnssssassesansesansens 22
5.2 TNGUNICOAETEXEFOIMAL ...coverreeneuneniierrereeenenesssssesereessses 23
53 TNGBItMaPFOrMat ...cccccieiiiiicicccicrererrrerrre e re e rerereresesesesesesesesesesesesesesenesesesesenenesenenenene 24
5.4 TINGDIDFOIMAL ...cereieeereeeiiiiereieernneeessieesereessssssssssssssessssssssssssssssssssssssssssesssssssssssssssssssssssssnses 24
5.5 TNGENAMETAfIlEFOIMALcoveeeeeeeeeiiiiieereeeneneesiieeereeessssssssscesseeesssssssssssssssssssssssssssssssssssnnses 25
5.6 TNGMEtafilePICtFOIrMALccvveeeiiirieneiierieneierteneiereonessersoseesersosesserssssssessossssssssnssssssansssessanes 26
5.7 TN GREUFFOIMAL ..euirieeeiierieeeiierieneiereeneesereosesserssssssesssssssesssssssesssssssssssssssesssnsssesssnsssssssnssssssanns 27
5.8 TNGHEMIFOIMAT .ceeeeiiiiiieiiirieneiiereeneeiereoneesersonessessssessersssessesssssssesssssssssssnsssssssnsssssssnsssssssnne 27
5.9 TINGUIIFOIMAT ...eereireeneeeniiierreieeennnsssssesssressnsssssssssssssssnnnses 28
5.10 TINGUIIWFEOIMAL ..eeeeeeeeeniiiereieeenensessesssreessssssssssssssessnses 28
5.11 LI\ L€ 5 1 DT 0T o] o] g 4 1 7= 29
5.12 TNGFileDesCriptOrFOIrMaAtcccccvrrrrreeeeeeeeeesrsssenneeeeeeecsssssassessessesesssssssssssssesesssssssssssssssessas 29
5.13 TNGFIleCoNtENTSFOIMALcciveeiiirreniiereeneierteneesereesessersesessessosessesssssssessassssessasssssssansssessanes 30
5.14 [O{TES €01 0 T 201 11 1= 1 £SO 31
Index 0

NG Drag&Drop Guide © 2018 LMD Innovative

This page is intentionallyleft blank.
Remove this text from the manual
template if you wantit completely blank.

Overview

1 Overview

LMD NG Drag&Drop is a part of Next Generation (NG) package suite. All these packages are based on
new IDE and language features of latest Delphi IDE versions.

NG Drag&Drop provides the ability to exchange data with other applications via standard Windows OLE
drag&drop protocol. There are a lot of common applications, which uses Windows drag&drop:

e Windows Explorer (shell) - allows to drag/receive real or virtual file objects.

e MS Office application (Word, Excel, Outlook, ect), WordPad, other text editors - allows to drag/receive
ANSI, Unicode, RTF and HTML text data, images, metafiles, files.

¢ Internet Browsers (Internet Explorer, Google Chrome, ect) - allows to drag/receive URLs (to open new
page or as a bookmark), text (as search query to open new page), files (as downloads).

¢ Adobe Photoshop - allows to drag/receive images.

e many other high quality Windows applications actually support drag&drop.

OLE drag&drop protocol declares two sides, which participate in data exchange:

e Source side provides the data and initiate data dragging. Please look at Data Dragging as Source
section.

e Target side receives dragging data, and handle data drop. Please look at Data Accepting as Target
section.

NG Drag&Drop supports both sides, and so, the application, which uses the package, can act as data
source or (and) as data target. Dragging data is called data object, and its a collection of user data
stored in predefined formats. There are a lot of standard data formats, which allows to send/receive
text, RTF, HTML, images, files, URLs, and are built-in NG Drag&Drop package. The following
standard/common formats are implemented:

CF_TEXT and CF_UNI CODETEXT - for dragging ANSI and Unicode text data.
CF_BI TMAP and CF_DI B - for dragging bitmaps.

CF_ENHMETAFI LE and CF_METAFI LEPI CT - for dragging Windows metafiles.
RTF - for RTF text.

HTM. - for HTML text.

I NETURLA and | NETURLW- for ANSI and Unicode URLs.

CF_HDROP - for dragging real existing files.

FI LEDESCRI PTOR and FI LECONTENTS - for dragging virtual files.

Users application, acting as a data source, can configure data object to include any desired combination
of data formats. As well, application acting as a target can support any desired formats combination,
accepting only required formats.

NG Drag&Drop provides a way for declaring custom formats. Custom formats have they own unique
names, and mostly used inside the application to transfer specifically formatted application data or to
prevent other applications to receive dragging data. Custom formats can be implemented on top of any
other built-in formats, just overriding format's name; or, from the scratch, by overriding data reading
and writing methods.

Please look at Data Formats section to learn more about supported data formats.

Components

NG Drag&Drop Guide © 2018 LMD Innovative

Overview

NG Drag&Drop include the following components, accessible from the Delphi's component palette at
design-time:

e TNGDr opSour ce - allows to configure dragging data and initiate drag&drop operation (source side).
e TNGDropTar get - allows to receive dragging data by registering some application's control as a drop
target and providing related events like OnDr agEnt er, OnDr agOver , OnDr agLeave, OnDr op; and a
single onDr agAct i on event, which can be used instead of all previously mentioned events to simplify

code.

Also, each supported data format is represented as a class descendant from TNGDat aFor mat base class,
for example, TNGText For mat , TNGUni codeText For mat , TNGBi t mapFor mat , ect. Moreover, each built-in
data format class has its shortcut alias like CF. TEXT, CF. UNI CODETEXT, CF. BI TMAP, which are declared
to make user's code more understandable.

Fluent Interface

NG Drag&Drop provides Fluent Interface API, which is an easy and very convenient way for supporting
drag&drop operations, without placing any component on the form. API supports both source and target
parts. For example, data dragging (source part) can be initiated as follows:

NGDr opSour ce. AddText (' My text')
. AddUni codeText (' My text')
. Execut e;

Features

Following is a short feature list of NG Drag&Drop package:

e TNGDr opSour ce component, which allows to drag data from customer's application to any other
drag&drop enabled applications.

e TNGDropTar get component, which allows to receive data from any drag&drop enabled application.

e Formal dealing of data formats. Any data drag operation can include any number of formats in
dragged data object. There no restrictions of format combinations used. Any drop target as well can
be configured to accept any combination of data formats.

¢ Built-in standard and common formats implementation:
o CF_TEXT

CF_UNI CODETEXT

CF_BI TMAP

CF_DI B

CF_ENHVETAFI LE

CF_METAFI LEPI CT

RTF

HTML

I NETURLA (Ansi)

I NETURLW (Unicode)

CF_HDROP

FI LEDESCRI PTOR

FI LECONTENTS

e TNGDat aFor mat base data format class can be subclassed for advanced implementation of complex
custom formats. Simple custom formats could be defined declaratively on the top of any existing
format class using Cust onFor mat attribute.

e Data format types shortcuts, such as CF. TEXT for TNGText For mat , Or CF. RTF for TNGRt f For mat .

O 000 O OO0 O0OOoOoOo

NG Drag&Drop Guide © 2018 LMD Innovative

This page is intentionallyleft blank.
Remove this text from the manual
template if you wantit completely blank.

Data Dragging as Source

Data Dragging as Source

2 Data Dragging as Source

Configuring Dragging Data

TNGDr opSour ce component allows to initiate dragging operation. Dragging data should be configured
first using TNGDr opSour ce. Dat a property. The property provide access to TNGSour ceDat a object, which
declares many methods to manipulate dragging data: Add, AddText , AddUni codeText , AddBi t map,
AddDi b, Cl ear, Renove, HasFor mat , HasAny, Count and I t ems.

The most important methods are Add and Addxxx methods, which allows to add some data to drop
source. Formally, any data can be added via Add method using required data format class:

NGDr opSour cel. Dat a. Add(TNGText For mat . Dat a(' My dragging text'));

Since built-in formats has shortcuts in the form of CF.XXX, the code can be clarified:

NGDr opSour cel. Dat a. Add(CF. TEXT. Dat a(' My dragging text'));

Moreover, special AddxxX methods are provided for some formats to make code even more simpler:
NGDr opSour cel. Dat a. AddText (' My dragging text');

To provide high level of control, NG Drag&Drop allows to work with data formats formally, independently
and explicitly. So, any combination of required data formats can be added to dragging data:

NGDr opSour cel. Dat a. Add(CF. URL. Dat a(' http://ww. googl e.com));
NGDr opSour cel. Dat a. AddText (' http://ww. googl e. com) ;

NGDr opSour cel. Dat a. AddUni codeText (' http://ww. googl e. conl) ;
NGDr opSour cel. Dat a. Add(CF. FI LEDESCRI PTOR. Data(...));

NGDr opSour cel. Dat a. Add(CF. FI LECONTENTS. Data(...));

The above example shows dragging data configuration to allow dragging URL to browser (via CF.URL
format), text editors (via CF.TEXT and CF.UNICODETEXT formats) and to Windows file explorer, creating
a file link to web page (via CF. FI LEDESCRI PTOR and CF. FI LECONTENTS) formats. Please look at Data
Formats section for more information about data supported formats.

Performing Drag&Drop Operation

After source data has been configured the drag&drop operation can be executed. To begin drag&drop
operation Execut e method of TNGDr opSour ce component should be called:

NGDr opSour cel. Execut e;

The method acts like modal dialogs executing methods and do not return until the drag&drop operation
ends. Typically, drag&drop operation should be started from some control's onMbuseDown event handle,
that is, when the mouse button is down. In usual cases its not a good idea to initiate drag&drop
operation from oncCl i ck event handler, because at this point mouse button is already up.

procedure TForml. Panel 1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
NGDr opSour cel. Dat a. AddText (' My draggi ng text');
NGDr opSour cel. Execut e;

end;

NG Drag&Drop Guide © 2018 LMD Innovative

Data Dragging as Source

NG Drag&Drop provides automatic detecting of mouse buttons state change; it remembers the state at
the beginning of the drag and cancel drag&drop operation, if state is changed. This default algorithm can
be customized using onQuer yCont i nueDr ag event.

Also, drag&drop operation is canceled when Escape key is pressed.

Usually, dragging data is configured for each drag&drop operation independently, so, TNGDr opSour ce
component provides Aut oCl ear property, which is set to Tr ue by default, and forces the component to
clear dragging data after each Execut e method call.

Execut e method allows to specify allowed drop effects, which can include demove, deCopy or deLi nk. If
the parameter is omitted, all of these effects are allowed. The method returns the actual effect, which
has been chosen by the target during drag&drop operation, or - deNone, if the operation has been
canceled. To learn more about drop effects please read Drop Effects section.

Fluent Interface

Since drag&drop operation executions are usually tiny and contains only few lines of code, NG Drag&Drop
provides special API for executing drag&drop operations even without placing the component on the
form. The API is provided by NGDr opSour ce global function, which returns special

TNGDr opSour ce. TBui | der object and can be used like this:

NGDr opSour ce. AddText (' My draggi ng text')
. AddUni codeText (' My draggi ng text')
. Execut e;

It contains, actually, the same Add, AddxxX and Execut e methods as in previously discussed
TNGDr opSour ce component.

NG Drag&Drop Guide © 2018 LMD Innovative

This page is intentionallyleft blank.
Remove this text from the manual
template if you wantit completely blank.

Data Accepting as Target

Data Accepting as Target

3 Data Accepting as Target
Accepting data

TNGDr opTar get component allows to accept dragging data. the component provides Cont r ol property,
which should be set to link to some Tw nCont r ol placed on the form. After that, this control become
registered as a drag&drop target, and can accept data when the data dragged over this control.

TNGDr opTar get component provides a lot of events for controlling current drag&drop operation:

OnDr agEnt er event is fired when the mouse cursor enter the control area.

OnDragOver event is fires when the mouse cursor moves over the control area.

OnDr agLeave event is fired when the mouse cursor leaves the control area.

onDr op event is fired when the user drops dragging data (e.g. when he release mouse button).

All these events declares "C" parameter of type TNGTar get Cont ext , which contains all information about
current drag&drop operation state, and provides methods and properties to accept or reject dragging
data. The following members can be used to query current drag&drop operation state:

C. Acti on property determines current drag action: daEnt er, daOver, daLeave Or daDr op.

C. KeySt at e property allows to determine, which mouse buttons are currently down and whether Shift,
Ctrl or Alt keys are pressed.

C. Cur sor Pos property allows to determine current mouse cursor position in screen coordinates.

C. Al | owed property provides access to allowed drop effects, which has been specified by the
operation source side. In daDr op action this property specifies currently accepted drop effect; please
read below. To learn more about drop effects please read Drop Effects section.

C. Dat a property provides access to TNGTar get Dat a object, which can be used to query currently
dragging data. The data contains a lot of properties and methods, like: HasFor mat , HasAny, For mat s,
For mat Name, AsFor mat , AsText, AsUni codeText , AsBi t map, ect.

Based on information, provided by the properties described above, the code in event handlers should
decide, whether to accept data or not. If dragging data should be accepted by current drop target,

C. Accept ed context property should be set to preferred drop effect. the following rules apply to

C. Accept ed and C. Al | owed properties in different drag&drop events:

e daEnter (OnDragEnter) - C. Al | owed is set to allowed by the source drop effects. C. Accept ed is set
to deNone initially, and can be changed inside event handler; however, its value is not really used,
because, for simplicity, onDr agOver event is fired immediately after onDr agEnt er.

e daOver (OnDragOver) - C. Al | owed is set to allowed by the source drop effects. C. Accept ed is set to
deNone initially, and can be changed inside event handler; this value is used to setup mouse cursor to
indicate current accept state.

e daLeave (OnDraglLeave) - C. Al | owed is set to allowed by the source drop effects. C. Accept ed is set
to deNone, and cannot be changed inside event handler. C. Dat a is also not accessible in this event.

e daDrop (OnDrop) - C. Al | owed is set to previously chosen in the onDr agover event drop effect.

C. Accept ed is also set to this drop effect initially and cannot be changed.

These rules implies the following: C. Accept ed should be really set only in daOver (OnDragOver) event.
daDr op (OnDr op) - will not be fired is the data is not accepted, e.g. C. Accept ed = deNone.

Since C. Accept ed property cannot be set to value not included in C. Al | owed property, its tricky to
specify value for it manually. So, TNGTar get Cont ext class provides a set of overloaded Accept methods,
which takes different parameters and can be used to simplify code. In simplest form Accept method can
take no parameters, which means that it accept data without any condition choosing from allowed drop

NG Drag&Drop Guide © 2018 LMD Innovative

Data Accepting as Target

effects automatically, based on currently pressed keys (Shift, Ctrl, Alt). To learn more about drop effects
please read Drop Effects section.

TNGDr opTar get component also provides onDr agAct i on event, which can be used instead of previously
described events, and allows to simlify source code by having whole drag&drop related code inside a
single event.

Lets now show an example of data accepting using onDr agAct i on event. The simplest case will look like:

procedure TForml. NGDropTar get 1DragActi on(Sender: TObject; C: TNGTar get Cont ext);
begin
case C. Action of
daOver: if C. Data.HasFormat (CF. TEXT) then
C. Accept ;
daDrop: Editl.Text := C. Data.AsText;
end;
end;

Accept Helper Methods

TNGTar get Cont ext object provides a set of overloaded Accept helper methods. The simplest case
without any parameters was discussed above. All of these methods was specifically designed to allow
very easy implementation of drop target event handlers. To get the impression of how they simplify code,
lets write another example:

procedure TForml. NGDropTar get 1Dr agActi on(Sender: TObject; C. TNGTarget Context);

var
s: Ansi String;
begin
if C.AcceptText(s) then
Editl. Text := s;
end;

That's all. No even "case C. Action of" is really required. The following rules are applied to C. Accept
helper methods to allow such a simple code writing:

¢ All these methods has Accept ed parameter, which specifies possible accepted drop effects, but can be
omitted, since it has a default value, indicating that all possible drop effects can be accepted. To learn
more about drop effects please read Drop Effects section.

o If the data should be accepted, all these methods sets C. Accept ed to appropriate value, which is
determined automatically, based on C. KeySt at e, C. Al | owed and method's Accept ed parameter
value.

¢ In actions other than daDr op, all these methods returns False, independently of whether the data
can be accepted or not; and return Tr ue only if the data has been really accepted (in daDr op event
only). They has been specially implemented in this way to support the following usage scenario:

procedure TForml. NGDropTar get 1DragActi on(Sender: TObject; C: TNGTar get Cont ext);
var
s: Ansi String;
us: string;
begin
i f C.AcceptUni codeText (us) then
Editl. Text :=s
else if C.AcceptText(s) then
Editl. Text :=s
end;

NG Drag&Drop Guide © 2018 LMD Innovative

Data Accepting as Target

That is:
e in daover event both formats (CF.TEXT and CF.UNICODETEXT) have a chance to be accepted.
e In daDr op event, Unicode text (if available in dragging data) will be preferred to ANSI text.

Please note, that c. Accept helper methods has been designed to simplify code in simple cases. In more
advances cases, all other methods, described below can be used explicitly.

Fluent Interface

Dragging data acceptance can be tiny as well as drag&drop operations execution. For such cases NG
Drag&Drop provides special API for configuring drop targets even without placing the component on the
form. The API is provided by NGDr opTar get global function, which returns special

TNGDr opTar get . TBui | der object and can be used like this:

procedure TFornb. For nCr eat e(Sender: TObj ect);

begin
NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)
var
s: Ansi String;
begin
if C.AcceptText(s) then
Editl. Text :=s;
end) ;
end;

procedure TFornb6. For mDest roy(Sender: TObject);
begin

NGDr opTar get . Unr egi st er (MyTar get Panel) ;
end;

NGDr opTar get . Regi st er method can be used to register some TW nContr ol as a drop tasrget, and its

usually called from OnFor nCr eat e event handler. Do not forget to unregister drop target calling
NGDr opTar get . Unr egi st er method eventually.

NG Drag&Drop Guide © 2018 LMD Innovative

Drop Effects

Drop Effects

4 Drop Effects

When the data is dragged over some drag&drop target, the target should accept or reject the data. But,
in OLE drag&drop its not just a Boolean value, the target should specify which drop effect it prefers. The
following drop effects are predefined by OLE drag&drop interface:

e Move (deMove) - data is moved from one place to another, or from one application to another. After
successful drag&drop operation initial data should be removed.

e Copy (deCopy) - data is copied from one place to another, or from one application to another. After
successful drag&drop operation initial data should not be removed, and two copies of data should exist
as a result.

e Link (deLi nk) - some sort of link to initial data should be created as a result of successful drag&drop
operation.

e None (deNone) - target do not accept dragging data.

Most people are familiar with drop effects, because they are used in Windows Explorer when dragging
files. If the file is simply dragged it will be moved from one location to another. If the user holds Ctrl key
pressed, mouse cursor include "+" glyph to indicate that dragging file will be copied. As well, if the user
holds Ctrl+Shift keys pressed, a link to dragging file will be created.

The same thing actually happens when the user drag selected text from WordPad to Word, for example.

If the Ctrl key is not pressed the text will be "moved" from one application to another, disappearing in the
initial application. Of course, what is really happens, is that receiving application adds dragging text to its
document, and then sending (source) application remove dragged text from its document.

Some applications can restrict possible drop effects. For example, bookmarks in Google Chrome can not
be copied, they can be only moved.

When initiating drag&drop operation, the source side should specify, which drop effects are allowed for
this operation. TNGDr opSour ce. Execut e method allows to specify allowed drop effects using its Al | owed
parameter. If the value for this parameter is not provided, all drop effects will be allowed.

If the target side want to accepts dragging data it should choose one drop effect from allowed effects to
indicate data acceptance. Context's C. Accept ed property should be set to chosen drop effect or to
deNone, if the target do not accept dragging data.

After dragging data has been accepted and dropped on the target, TNGDr opSour ce. Execut e returns and
provide the final drop effect, chosen by the target, as a result value.

Choosing drop effect can be tricky task for target, since it need to analyze provided by the source allowed
drop effects, analyze C. KeySt at e, analyze its own possibilities (e.g. whether it can support, for example,
deLi nk atall). So, NG Drag&Drop provides helper Accept methods, which can simplify the task. Accept
methods provide Accept ed parameter, which can be used to specify, which drop effects are supported
by the target. If the parameter value is not specified, all drop effects will be accepted.

NG Drag&Drop use the following algorithm to choose drop effect:

o Intersect allowed by the source drop effects with supported by the target.

o If intersected effects include deLi nk, and Ctrl+Shift keys are pressed, then the resulting drop effect is
delLi nk.

o Otherwise, if intersected effects include deCopy, and Ctrl key is pressed, then the resulting drop effect
is deCopy.

¢ Otherwise, if intersected effects include deMove, then the resulting drop effect is deMove.

o Otherwise, if intersected effects include deCopy, then the resulting drop effect is deCopy, even if no
keys are pressed.

NG Drag&Drop Guide © 2018 LMD Innovative

Drop Effects

e Otherwise, if intersected effects include deLi nk, then the resulting drop effect is deLi nk, even if no
keys are pressed.
e Otherwise the resulting drop effect is deNone.

So, in very simple case C. Accept method can be called to accept dragging data without worrying about
effects, and NG Drag&Drop will choose appropriate drop effect automatically. In more advanced cases,
when the application wants to customize the above algorithm, it should set the value of C. Accept ed
property manually, without using Accept helper methods.

NG Drag&Drop Guide © 2018 LMD Innovative

This page is intentionallyleft blank.
Remove this text from the manual
template if you wantit completely blank.

Data Formats

Data Formats

5 Data Formats

To transfer data between applications the data should be formatted in memory in some standard way to
allow different applications understand each other. NG Drag&Drop provides support for most standard
and common data formats, used in OLE drag&drop to drag and receive data to/from many Windows
applications. This includes text, RTF, HTML, pictures, URLs, files data and more.

Typically single drag&drop operation transfer data object, which contain data in several data formats
simultaneously. For example, CF_TEXT and CF_UNI CODETEXT data are commonly transferred together to
support both: Unicode and non-Unicode applications. As well, some formats are specially designed to be
used together, like FI LEDESCRI PTOR and FI LECONTENTS formats, which are used to drag/receive virtual
files. Unlike most other libraries, NG Drag&Drop allow to work with formats formally, by providing the
possibility to include any combination of data formats into single drag&drop operation.

In NG Drag&Drop each data format is represented by a class descendant from TNGDat aFor mat base
class. Following is a list of all built-in data formats:

TNGTextFormat
TNGUnicodeTextFormat
TNGBitmapFormat
TNGDibFormat
TNGEnhMetafileFormat
TNGMetafilePictFormat
TNGRtfFormat
TNGHtmIFormat
TNGUrIFormat
TNGHDropFormat
TNGFileDescriptorFormat and TNGFileContentsFormat

As well, NG Drag&Drop provides the ability to declare custom data formats. This feature can be used to
implement application's private drag&drop formats or to implement missing commonly used formats. To
learn about custom data formats please read the Custom Formats section.

NG Drag&Drop demo includes a feature to enumerate data formats in currently dragged data object. This
feature can be used to learn, which applications supports which data formats.

5.1 TNGTextFormat

TNGText For mat class implements standard cF_TEXT data format and allows to drag/receive ANSI text
data. NG Drag&Drop use Ansi St ri ng standard Delphi type for working with ANSI text data.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag text data at the

source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF. TEXT to make user's code more readable:

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

5.2

NGDr opSour ce. Add(CF. TEXT. Data(' My draggi ng text'))
. Execut e;

NGDr opTar get . Regi ster (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
s: Ansi String;
begin
if C. Accept (CF. TEXT. Ref (@)) then
Editl. Text := string(s);
end) ;

Moreover, special methods are declared for working with text data, which can simplify code even more:

NGDr opSour ce. AddText (' My draggi ng text')
. Execute;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
s: Ansi String;
begin
if C. AcceptText(@) then
Edit1. Text := string(s);
end) ;

TNGUnicodeTextFormat
|

TNGUni codeText For mat class implements standard CF_UNI CODETEXT data format and allows to
drag/receive Unicode text data. NG Drag&Drop use st ri ng standard Delphi type for working with Unicode
text data.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag text data at the
source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF. UNI CODETEXT to make user's code more readable:

NGDr opSour ce. Add(CF. UNI CODETEXT. Dat a(' My draggi ng text'))
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
s: string;
begin
if C.Accept (CF. UNI CODETEXT. Ref (@)) then
Edit1l. Text :=s;
end) ;

Moreover, special methods are declared for working with text data, which can simplify code even more:

NGDr opSour ce. AddUni codeText (' My draggi ng text')
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel, procedure(C: TNGTar get Cont ext)

var
s: string;
begin
i f C.AcceptUni codeText (@) then
Editl. Text :=s;
end) ;

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

5.3 TNGBitmapFormat
.

TNGBi t mapFor mat class implements standard cF_Bl TMAP data format and allows to drag/receive
bitmaps. NG Drag&Drop use TBi t map standard Delphi type for working with bitmap data.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag image data at the
source side, while Ref method can be used to receive images at the target side. NG Drag&Drop declares
special type alias cF. BI TMAP to make user's code more readable:

NGDr opSour ce. Add(CF. Bl TMAP. Dat a(b))
. Execute;

NGDr opTar get . Regi ster (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
b: TBi t map;
begin
b := Thitmap. Create;
try
if C.Accept (CF.BlI TMAP. Ref (b)) then
ShowBi t map(b);
finally
b. Free;
end;
end) ;

Moreover, special methods are declared for working with bitmap data, which can simplify code even
more:

NGDr opSour ce. AddBi t map(b)
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
b: TBitmap;
begin
b := Thitmap. Create;
try
if C. AcceptBitmap(b) then
ShowBi t map(b) ;
finally
b. Free;
end;
end) ;

5.4 TNGDibFormat
|

TNGDi bFor mat class implements standard CF_DI B data format and allows to drag/receive device
independed bitmaps. NG Drag&Drop use TBi t map standard Delphi type for working with bitmap data.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag image data at the

source side, while Ref method can be used to receive images at the target side. NG Drag&Drop declares
special type alias cF. DI B to make user's code more readable:

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

5.5

NGDr opSour ce. Add(CF. DI B. Dat a(b))
. Execut e;

NGDr opTar get . Regi ster (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
b: TBi t map;
begin
b := Thitmap. Create;
try
if C.Accept(CF.DIB.Ref(b)) then
ShowBi t map(b);
finally
b. Free;
end;
end) ;

Moreover, special methods are declared for working with bitmap data, which can simplify code even
more:

NGDr opSour ce. AddDi b(b)
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
b: TBit map;
begin
b := Thitmap. Create;
try
if C. AcceptDi b(b) then
ShowBi t map(b);
finally
b. Free;
end;
end) ;

TNGEnhMetafileFormat
|

TNGEnhMet af i | eFor mat class implements standard CF_ENHMETAFI LE data format and allows to
drag/receive Windows GDI metafiles. NG Drag&Drop use Timet af i | e standard Delphi type for working
with metafile data.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag metafile data at the
source side, while Ref method can be used to receive metafiles at the target side. NG Drag&Drop
declares special type alias CF. ENHMETAFI LE to make user's code more readable:

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

NGDr opSour ce. Add(CF. ENHMETAFI LE. Dat a(m))
. Execute;

NGDr opTar get . Regi ster (MyTar get Panel , procedure(C: TNGTar get Cont ext)
var
m TMetafile;
begin
m:= TMetafile.Create;
try
if C.Accept (CF. ENHVETAFI LE. Ref (m)) then
ShowMet afil e(m ;
finally
m Fr ee;
end;
end) ;

Moreover, special methods are declared for working with bitmap data, which can simplify code even
more:

NGDr opSour ce. AddEnhMet afi |l e(m)
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)
var
m TMetafile;
begin
m:= TMetafile.Create;
try
if C. Accept EnhMetafile(m then
ShowMet afil e(m ;
finally
m Free;
end;
end) ;

5.6 TNGMetafilePictFormat

TNGMet af i | ePi ct For mat class implements standard CF_METAFI LEPI CT data format and allows to
drag/receive old style Windows metafiles. NG Drag&Drop use TMet af i | e standard Delphi type for
working with metafile data.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag metafile data at the
source side, while Ref method can be used to receive metafiles at the target side. NG Drag&Drop
declares special type alias CF. METAFI LEPI CT to make user's code more readable:

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

NGDr opSour ce. Add(CF. METAFI LEPI CT. Dat a(m))
. Execut e;

NGDr opTar get . Regi ster (MyTar get Panel , procedure(C: TNGTar get Cont ext)
var

m TMetafile;
begin

m:= TMetafile.Create;

try

if C.Accept (CF. METAFI LEPI CT. Ref (m)) then
ShowMet afil e(m ;

finally
m Free;
end;
end) ;

5.7 TNGRtfFormat
|

TNGRt f For mat class implements common RTF data format and allows to drag/receive Rich Text Format
data. As specified, RTF data is sequence of 7-bit ASCII chars, and so, NG Drag&Drop use
RawByt eSt ri ng standard Delphi type for working with RTF.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag RTF data at the
source side, while Ref method can be used to receive RTF at the target side. NG Drag&Drop declares
special type alias CF. RTF to make user's code more readable:

NGDr opSour ce. Add(CF. RTF. Dat a(s))
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)
var
s: RawByteString;
begin
if C.Accept(CF. RTF. Ref (@)) then
ShowRt f (s) ;
end) ;

Please look at provided demo project to understand how to get RTF data from TRi chEdi t Delphi
component, and how to set it back.

5.8 TNGHtmlIFormat
|

TNGHt ml For mat class implements common HTML data format and allows to drag/receive HTML data. NG
Drag&Drop use st ri ng standard Delphi type for working with HTML.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag HTML data at the

source side, while Ref method can be used to receive HTML at the target side. NG Drag&Drop declares
special type alias cF. HTM. to make user's code more readable:

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

NGDr opSour ce. Add(CF. HTM.. Dat a(s))
. Execut e;

NGDr opTar get . Regi ster (MyTar get Panel , procedure(C: TNGTar get Cont ext)
var
s: string;
begin
if C. Accept(CF. HTM.. Ref (@)) then
ShowHt m (s) ;
end) ;

HTML format is bit tricky, and contain special text headers, so please look MSDN Documentation to
understand it. NG Drag&Drop does not add/parse such header data internally, so it should be added
manually.

Please, look at provided demo project to understand how to work with HTML data format.

5.9 TNGUrlFormat
|

TNGUr | For mat class implements common URL data format and allows to drag/receive ANSI URLs. NG
Drag&Drop use Ansi St ri ng standard Delphi type for working with ANSI URLs.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag URL data at the
source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF. URL to make user's code more readable:

NGDr opSour ce. Add(CF. URL. Dat a(' htt p://googl e.com))
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
s: Ansi String;
begin
if C Accept(CF.URL. Ref (@)) then
Edi t1. Text := string(s);
end) ;

5.10 TNGUrlWFormat
]

TNGUr | Wror mat class implements common URL data format and allows to drag/receive Unicode URLs.
NG Drag&Drop use st ri ng standard Delphi type for working with Unicode URLs.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag URL data at the
source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF. URLWto make user's code more readable:

NGDr opSour ce. Add(CF. URLW Dat a(' htt p:// googl e. com))
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
s: string;
begin
if C.Accept(CF. URLW Ref (@)) then
Editl. Text := s;
end) ;

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

5.11 TNGHDropFormat
I ——

TNGHDr opFor mat class implements standard CF_HDROP data format and allows to drag/receive really
existing files. NG Drag&Drop use TNGSt r Ar r ay type, which is a dynamic array of string, for working with
CF_HDROP data. The data should contain one or more really existing file paths.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag file paths data at the
source side, while Ref method can be used to receive text data at the target side. NG Drag&Drop
declares special type alias CF. HDROP to make user's code more readable:

Set Legnt h(s, 3);

s[0] := "c:\MWyTextl. txt"';
s[0] ;= "c:\MWText2.txt";
s[0] :="c:\MWText3.txt";

NGDr opSour ce. Add(CF. HDROP. Dat a(s))
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)
var
s: TNGStrArray;
begin
if C.Accept (CF. HDROP. Ref (@)) then
ShowFi | es(s);
end) ;

5.12 TNGFileDescriptorFormat

TNGFi | eDescri pt or For mat class implements common FILEDESCRIPTOR data format and allows to
drag/receive virtual files created on-the-fly from any data stream. NG Drag&Drop use special

TNGFi | eArray type, which is a dynamic array of special TNGFi | eDescri pt or records, for working with
FILEDESCRIPTOR data. Please note that this format is specially designed to be used together with
TNGFileContentsFormat format. While this format provide descriptions (like names, sizes, file dates and
attributes) of dragging virtual files, TNGFileContentsFormat provides data streams for dragging virtual
files.

TNGFi | eDescri pt or record allows to specify the following file properties:

e Nane - the name of file, like 'MyText.txt'

Cl si d - is the special GUID like identifier for special file system objects, like "Recycle Bin". Please read
MSDN documentation.

Attributes - file attributes, like for any other file.

CreationTi me, Last AccessTi me, Last Wi t eTi ne - file times.

Si ze - the size of corresponding data stream, in bytes.

Fl ags - this property indicates, which other properties has been specified. A flag is set up
automatically, when the corresponding property value is assigned. Actually, only Name property is
required to be specified, all other properties are optional.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag virtual files at the
source side, while Ref method can be used to receive files data data at the target side. NG Drag&Drop
declares special type alias CF. FI LEDESCRI PTOR to make user's code more readable:

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

5.13

Set Legnt h(d, 1);
d[0].Name := '"c:\MWText1l. txt"';
d[0]. Size := 10;

NGDr opSour ce. Add(CF. FI LEDESCRI PTOR. Dat a(d))
. Add(CF. FI LECONTENTS. Dat a(. . .))
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)
var

d: TNGFi | eArray;

cnt: TNGFi |l eContents;
begin

if C.Accept (CF.Fl LEDESCRI PTOR. Ref (@l)) and

C. Accept (CF. FI LECONTENTS. Ref (@nt)) then
ShowFi | es(d);

end) ;

TNGFileContentsFormat
|

TNGFi | eCont ent sFor mat class implements common FI LECONTENTS data format and allows to
drag/receive virtual files created on-the-fly from any data stream. NG Drag&Drop use array of |Stream
type at the source side, and a special TNGFi | eCont ent s record, which allows to query | St r eamfor each
file, at the target side. Please note that this format is specially designed to be used together with
TNGFileDescriptorFormat format. While TNGFileDescriptorFormat format provide descriptions (like
names, sizes, file dates and attributes) of dragging virtual files, this format provides data streams for
dragging virtual files. please also note, that TNGFi | eCont ent s record has no Count property, since the
count of dragging files should be determined from the corresponding TNGFileDescriptorFormat data.

The class declares two methods: Dat a and Ref . Dat a method can be used to drag virtual files at the
source side, while Ref method can be used to receive files data data at the target side. NG Drag&Drop
declares special type alias CF. FI LECONTENTS to make user's code more readable:

Set Length(cnt, 1);
cnt[0] := TStreamAdapter.Create(MFileStream soOawned);

NGDr opSour ce. Add(CF. FI LEDESCRI PTOR. Data(...))
. Add(CF. FI LECONTENTS. Dat a(cnt))
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)
var
d: TNGFi | eArray;
cnt: TNGFil eContents;
S: TSt ream
begin
i f C. Accept (CF. Fl LEDESCRI PTOR Ref (@l)) and
C. Accept (CF. FI LECONTENTS. Ref (@nt)) then
begi n
s := TO eStream Create(cnt[0]);
ShowFi | eCont ent (s);
s. Free;
end;
end) ;

TSt reampapt er standard Delphi class can be used to convert any usual TSt reamto OLE | St r eam Please
note, that the resulting I st r eamobject is referenced by OLE and its actually unknown, when it will be

NG Drag&Drop Guide © 2018 LMD Innovative

Data Formats

released. So, its recommended to use soOaned value in the TSt r eamAapt er constructor call to allow
resulting | st r eamown initial TSt r eam object.
To convert | st reamback to Tst r eamat the target side, Ta est r eamstandard Delphi class can be used.

5.14 Custom Formats
1

NG Drag&Drop provides the ability to declare custom data formats. This feature can be used to
implement application's private drag&drop formats or to implement missing commonly used formats.

An easy way to declare custom format based on some predefined format is to use
Cust onFor mat At t ri but e attribute. A custom format should have its own unique name, which is used to
register the format in the system:

type
[Cust omFor mat (" My Uni que Fornmat Name')]
TMyFormat = cl ass(TNGText For mat) ;

That it! The custom format is declared. And so, it can be used like any other data format:

NGDr opSour ce. Add(TMyFor mat . Dat a(' My dragging text'))
. Execut e;

NGDr opTar get . Regi st er (MyTar get Panel , procedure(C: TNGTar get Cont ext)

var
s: Ansi String;
begin
if C.Accept(TMyFormat.Ref (@)) then
Edi t1. Text := string(s);
end) ;

Advanced users can also implement custom formats descending the class directly from TNGDat aFor mat
base class, just like built-in formats are implemented. This way the user have to deal with some low-
level OLE drag&drop stuff, for example, TSt gMedi umand TFor mat Et ¢ WiInAPI structures, which are out
of current documentation scope. The source code in NG.DragDrop.Formats.pas unit, where all built-in
formats are declared can be used as a reference implementation.

NG Drag&Drop Guide © 2018 LMD Innovative

	Table of Contents
	Overview
	Data Dragging as Source
	Data Accepting as Target
	Drop Effects
	Data Formats
	TNGTextFormat
	TNGUnicodeTextFormat
	TNGBitmapFormat
	TNGDibFormat
	TNGEnhMetafileFormat
	TNGMetafilePictFormat
	TNGRtfFormat
	TNGHtmlFormat
	TNGUrlFormat
	TNGUrlWFormat
	TNGHDropFormat
	TNGFileDescriptorFormat
	TNGFileContentsFormat
	Custom Formats

