
®

NG DialogPack Guide

USER MANUAL

© 2018 LMD Innovative
LMD Innovative

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

3

NG DialogPack Guide © 2018 LMD Innovative

Table of Contents

1. Overview 5

2. TNGTaskDialog 11

3. TNGInputDialog 15

4. Advanced Features 21

5. Fluent Interface 27

Index 0

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Overview

6

NG DialogPack Guide © 2018 LMD Innovative

Overview

1 Overview

LMD NG-DialogPack is a part of Next Generation (NG) package suite. All these packages are based on
new IDE and language features of latest Delphi IDE versions.

NG-DialogPack is based on the features provided by Microsoft Windows Vista Task Dialog API, which
allows to create and show Windows Vista (Windows 7) like dialogs. The package extends platform API
with emulation mode, which allows to use NG-DialogPack components in previous OS versions, such as
Windows XP. Also, emulation mode provides additional features, such as Input Dialog, which has no
analog in platform API.

Following is a simple example of the task dialog:

Features

NG-DialogPack package contains tree major components:

· TNGTaskDialog component allows to configure and show Windows Vista (Windows 7) like task dialogs.
Task dialog can contain:
o Caption, Title and Content texts.

o MainIcon, which can be one of the standard icons, like Information, Warning, Error, ect.; or a

custom icon.
o Standard buttons, such as Ok, Cancel, Yes, No, Retry, ect; or a custom buttons, with custom

Caption, ModalResult and Enabled state, configurable by the user. There is the ability to show
custom buttons as command links, supporting CommandLinkHint feature.

o Radio buttons with Caption and Enabled state configurable by the user.

o Progress bar with various configurable properties, such as Min, Max and Position.

o Expandable additional information text with expand/collapse button.

o Verification check-box with configurable initial check-box state and check-box caption.

o Footer area with FooterIcon, analogous to MainIcon, and FooterText.

· TNGInputDialog component allows to configure and show input dialog, which is a dialog that contains
some input control, such as edit or memo, and provides a way for the user to input a value. Input
dialog can contain:

7

NG DialogPack Guide © 2018 LMD Innovative

Overview

o Caption, Title and Content texts, MainIcon, standard and custom buttons, expandable additional

information, verification check-box and footer area - all these features are analogous to
TNGTaskDialog.

o Input control, which can be configured by the user by assigning a value to InputType property. Input

control can be one of the following: edit, memo, password edit, editable combo-ox, non-editable
combo-box, date-time picker or a custom input control (or several controls) configured as a mini-
HTML template, using TemplateHtml property.

o InputValue property can be used to specify initial input value, which is shown when the dialog

executed. As well, InputItems property can be used to configure combo-box items.
· TNGMessageDialog component allows to configure and show simple message dialogs with a look,

compatible with TNGTaskDialog. The main purpose of the component is to be used internally inside
TNGDialogs.Message overloaded methods, so, it, probably, need not be used explicitly. The
component provides a set of properties, which are analogous to Delphi standard MessageDlg function
parameters.

First two dialog components support advanced set of features, such as callback timer, OnButtonClick
event with the ability of dialog content modification from the event handler, and navigation.

Fluent Interface

We are proud to introduce a simple, very convenient API for executing dialogs. The API is organized as
static methods of TNGDialogs structure, most of which are overloaded. In most cases this API allows to
show required dialog writing one or just several lines of code without placing dialog components on the
form. The API provides replacement for standard Delphi dialog functions, such as ShowMessage,
MessageDlg, InputBox and InputQuert to allow to show dialogs, compatible with task dialog look and
feel. It also contains some additional simple dialog functions, such as Error, Warning or Information.
All these function are overloaded, which allows to specify only required parameters.

Another part of Fluent Interface API is our unique dialog builders, available for task and input dialogs.
Following are some usage examples:

The code:

 TNGDialogs.Task('My caption', 'My title', 'My description text')

 .Icon(tdiInformation)

 .Buttons([tcbOk, tcbCancel], tcbOk)

 .Execute;

will show the following simple dialog:

More complex example:

8

NG DialogPack Guide © 2018 LMD Innovative

Overview

 case TNGDialogs.Task('My caption', 'My title', 'My description text')

 .Icon(Application.Icon)

 .Button('My button', 100, True)

 .Buttons([tcbOk, tcbCancel])

 .ExpandableInfo('My long long expandable information text')

 .Footer('My footer text', tdiWarning)

 .Execute of

 100: ; // My button clicked.

 mrOk: ;

 mrCancel: ;

 end;

will show the following:

For more information please look at Fluent Interface description.

Design-Time Editor

The package provides design-time editor for TNGTaskDialog and TNGInputDialog components. Double
click on the dialog component. placed on a form, to execute design-time editor. The editor provides a
simple way to configure dialog, and provides the ability to look at the resulting dialog by clicking "Show
Dialog" button:

9

NG DialogPack Guide © 2018 LMD Innovative

Overview

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

TNGTaskDialog

12

NG DialogPack Guide © 2018 LMD Innovative

TNGTaskDialog

2 TNGTaskDialog

TNGTaskDialog is a dialog component, which implements features, provided by Microsoft Windows Vista Task Dialog API. The component is used to show Windows Vista (Windows 7) like dialogs, which are usually used to show some information to the user, like warning or error message, or to request the user to make a choice by asking some question.

The dialog surface can contain a variety of standard elements, however usually they are not used all at
ones. Full task dialog structure is shown below:

1) Dialog form caption. Use Caption property to specify the caption text.
2) Dialog title. This is short main text. Use Title property to specify it.
3) Dialog description. The description is a longer text, which describes the required action more

precisely. Use Text property to specify it.

13

NG DialogPack Guide © 2018 LMD Innovative

TNGTaskDialog

4) Main dialog icon. The dialog can show no icon, one of the standard icons or a custom icon. To
specify one of the standard icons use MainIcon property, to specify custom icon - use
CustomMainIcon property. Note, that setting one property will reset another. The icon is always re-
sized to standard size, which is usually 32x32 pixels.

5) Additional expandable text; can be specified using ExpandedInformation property. This text can
contain even more long description. Usually this text is not visible (collapsed) until the user click on
expand button (8). Expand button (8) is not shown if ExpandedInformation property value is set to
empty string.

6) Progress bar. Has a variety of properties, such as Min, Max, Position, State and Marquee. For
showing progress bar the user should include tdfShowProgressBar value into Flags set property.
The timer feature can be used to update progress bar state during dialog execution (look at
Advanced Features for more information).

7) Radio buttons. Radio buttons can be configured using RadioButtons collection property. The
collection allows to add/remove radio buttons, which are of type TNGTaskDlgRadioButtonItem
class. Caption and Enabled state can be specified for each radio button. As well a radio button
have Default property, which can be set to True to specify initially selected radio button; setting
this property to True for one radio button will reset it to False for all others.

8) Expand/collapse button. This button is shown when ExpandedInformation property is set to non
empty string. It allow to expand or collapse (show or hide) additional expandable information (5).
The caption of this button in both expanded and collapsed states is set automatically by OS, but can
be customized using ExpandButtonCaption and CollapseButtonCaption properties.

9) Verification check-box. This check-box is shown when VerificationText property value is set to
non empty string. Check-box checked status can be controlled using tdfVerificationFlagChecked
dialog flag.

10) Custom buttons. Custom buttons (as opposed to standard buttons(11)) are additional dialog buttons.
They can be configured using CustomButtons collection property. CustomButtons collection allows
to add/remove custom buttons, which are of type TNGTaskDlgButtonItem class. Caption, Enabled
and ModalResult properties can be specified for each custom button. Usually the user should
specify unique modal result for each custom button to be able to know, which button has been
pressed during dialog execution. As well a custom button have Default property, which can be set
to True to specify the default button; setting this property to True for one button will reset it to
False for all others. Also, task dialog provides an option to show custom buttons as command links
(14).

11) Standard buttons. Can be specified using Buttons set property. Standard buttons can't be disabled,
and as well, standard buttons has standard modal results. For example, tcbOk button will have
mrOk modal result. One of the standard buttons can be set as default using DefaultButton
property. Setting the property will reset Default property in all custom buttons (and vice versa). If
there no standard or custom buttons configured, OK button is automatically added.

12) Footer. The footer contain FooterIcon and FooterText. The footer is shown only if FooterText
property contains non empty string value. Footer icon can be one of the predefined icons or a
custom icon just like main icon (4). The icon is always re-sized to standard size, which is usually
16x16 pixels.

13) Standard Close window button :). However, there is an important note: clicking on it will fire
OnButton click event handler with mrCancel modal result. Just like with other buttons, the user can
set CanClose event handler parameter to False to prevent dialog closing (look at Advanced
Features for more information).

14) Custom buttons shown as command links. Task dialog allows to show custom buttons as command
links. To achieve this tdfUseCommandLinks dialog flag should be used. Usually command links show
provided by OS standard arrow icon, however, the user can hide these icon using
tdfUseCommandLinksNoIcon dialog flag. Command links provides additional hints, which are longer
text descriptions. They can be specified using CommandLinkHint button property.

Platform Mode

14

NG DialogPack Guide © 2018 LMD Innovative

TNGTaskDialog

As has been noted above TNGTaskDialog is based on Task Dialog API, which was first found in Microsoft
Windows Vista. To allow our component be usable on previous OS version, such as Windows XP, we
implemented fully native emulation mode. This mode can be turned on explicitly or will be used
automatically if platform API is not available (on Windows XP). To turn emulation mode on the user
should set PlatformMode property to tdmNever.

Dialog Execution

TNGTaskDialog component can be placed on the form and configured using Delphi's Object Inspector or
dialog component editor. The dialog can be also configured in code, using Fluent Interface. Anyway, after
that the dialog should be executed. The dialog can be executed by calling Execute method, which works
like standard ShowModal method, and will blocks until dialog is closed. Execute method returns modal
result value, which specifies, which button has been pressed. Returned modal result can be one of the
standard predefined values, such as mrOk, mrCancel, mrYes, mrNo, ect. Or, it can be a value specified as
ModalResult property value for a custom button.

Note, that is no custom buttons was specified and standard buttons Buttons property has been explicitly
reset to [] empty set, then Ok button will be implicitly added. So, be prepared for mrOk return value in
this case.
Also, remember, that standard close window button (13) works as a Cancel button. So, be prepared for
mrCancel return value.

Among return value of Execute method, the dialog provides some additional properties, which describe
dialog resulting state. These properties are:

· ModalResult - same as Execute method return value.
· Clicked - provides a reference to last clicked custom button, or nil - if one of the standard buttons

has been clicked. However, its a good practice to assign unique modal result values for each button.
For custom buttons values can start from some number, which is guaranteed to be greater than all
standard values. For example, use the values >= 100. In this case Clicked property is basically
unneeded and all decisions can be made based on ModalResult purely.

· Selected - provides a reference to selected radio button. Unlike buttons, radio buttons has no modal
result, however, since they are collection items, standard Index method can be used. So,
Selected.Index can be used to organize case/of construct with constant numeric values.

Note that TNGTaskDialog supports advanced execution features, like timer, OnButtonClick event and
navigation.

TNGInputDialog

16

NG DialogPack Guide © 2018 LMD Innovative

TNGInputDialog

3 TNGInputDialog

TNGInputDialog is a dialog component, which provides a way for the user to enter input value. Usually
this value is a string value, so edit or memo controls are used to represent/edit the value. However, input
dialog supports more input controls:

· Edit
· Memo
· Date-time picker
· Editable Combo-box
· Non-editable Combo-Box
· Password edit
· Custom Mini-HTML template.

This dialog can be used in situations, where InputBox and InputQuery standard Delphi functions has been
previously used. The dialog descend some of the features from task dialog and provides compatible look
and feel. The dialog surface can contain a variety of standard elements, however usually they are not
used all at ones. Full input dialog structure is shown below:

17

NG DialogPack Guide © 2018 LMD Innovative

TNGInputDialog

1) Dialog form caption. Use Caption property to specify the caption text.
2) Dialog title. This is short main text. Use Title property to specify it.
3) Dialog description. The description is a longer text, which describes the required action more

precisely. Use Text property to specify it.
4) Main dialog icon. The dialog can show no icon, one of the standard icons or a custom icon. To

specify one of the standard icons use MainIcon property, to specify custom icon - use
CustomMainIcon property. Note, that setting one property will reset another. The icon is always re-
sized to standard size, which is usually 32x32 pixels.

5) Input control. Can be one of the types specified above; InputType property can be used to specify
input control type. Initial input value can be specified using InputValue property. Also, use Items
property to specify combo-box items. If InputType is set to itTemplate, then the Mini-HTML
template can be specified using TemplateHtml property; refer to NG-HtmlPack and Mini-HTML
documentation for more information.

6) Additional expandable text; can be specified using ExpandedInformation property. This text can
contain even more long description. Usually this text is not visible (collapsed) until the user click on
expand button (8). Expand button (8) is not shown if ExpandedInformation property value is set to
empty string.

7) Expand/collapse button. This button is shown when ExpandedInformation property is set to non
empty string. It allow to expand or collapse (show or hide) additional expandable information (6).
The caption of this button in both expanded and collapsed states is set automatically by OS, but can
be customized using ExpandButtonCaption and CollapseButtonCaption properties.

8) Verification check-box. This check-box is shown when VerificationText property value is set to
non empty string. Check-box checked status can be controlled using tdfVerificationFlagChecked
dialog flag.

9) Custom buttons. Custom buttons (as opposed to standard buttons(10)) are additional dialog buttons.
They can be configured using CustomButtons collection property. CustomButtons collection allows
to add/remove custom buttons, which are of type TNGTaskDlgButtonItem class. Caption, Enabled
and ModalResult properties can be specified for each custom button. Usually the user should
specify unique modal result for each custom button to be able to know, which button has been
pressed during dialog execution. As well a custom button have Default property, which can be set
to True to specify the default button; setting this property to True for one button will reset it to
False for all others.

18

NG DialogPack Guide © 2018 LMD Innovative

TNGInputDialog

10) Standard buttons. Can be specified using Buttons set property. Standard buttons can't be disabled,
and as well, standard buttons has standard modal results. For example, tcbOk button will have
mrOk modal result. One of the standard buttons can be set as default using DefaultButton
property. Setting the property will reset Default property in all custom buttons (and vice versa). If
there no standard or custom buttons configured, OK button is automatically added.

11) Footer. The footer contain FooterIcon and FooterText. The footer is shown only if FooterText
property contains non empty string value. Footer icon can be one of the predefined icons or a
custom icon just like main icon (4). The icon is always re-sized to standard size, which is usually
16x16 pixels.

12) Standard Close window button :). However, there is an important note: clicking on it will fire
OnButton click event handler with mrCancel modal result. Just like with other buttons, the user can
set CanClose event handler parameter to False to prevent dialog closing (look at Advanced
Features for more information).

13) Just an example of date-time picker as input control. Note, that in this case provided initial
InputValue (if not empty string) need to be converted to TDateTime value. So, if incorrect string
will be specified, the exception will be raised.

Platform Mode

Unlike TNGTaskDialog, TNGInputDialog is always executed in emulated mode, because platform Task
Dialog API does not provide any way to organize input dialog functionality.

Dialog Execution

TNGInputDialog component can be placed on the form and configured using Delphi's Object Inspector
or dialog component editor. The dialog can be also configured in code, using Fluent Interface. Anyway,
after that the dialog should be executed. The dialog can be executed by calling Execute method, which
works like standard ShowModal method, and will blocks until dialog is closed. Execute method returns
modal result value, which specifies, which button has been pressed. Returned modal result can be one of
the standard predefined values, such as mrOk, mrCancel, mrYes, mrNo, ect. Or, it can be a value
specified as ModalResult property value for a custom button.

Note, that is no custom buttons was specified and standard buttons Buttons property has been explicitly
reset to [] empty set, then Ok button will be implicitly added. So, be prepared for mrOk return value in
this case.
Also, remember, that standard close window button (13) works as a Cancel button. So, be prepared for
mrCancel return value.

Among return value of Execute method, the dialog provides some additional properties, which describe
dialog resulting state. These properties are:

· ModalResult - same as Execute method return value.
· InputValue - after dialog execution is contains entered (modified) input value.
· Clicked - provides a reference to last clicked custom button, or nil - if one of the standard buttons

has been clicked. However, its a good practice to assign unique modal result values for each button.
For custom buttons values can start from some number, which is guaranteed to be greater than all
standard values. For example, use the values >= 100. In this case Clicked property is basically
unneeded and all decisions can be made based on ModalResult purely.

· Selected - provides a reference to selected radio button. Unlike buttons, radio buttons has no modal
result, however, since they are collection items, standard Index method can be used. So,
Selected.Index can be used to organize case/of construct with constant numeric values.

19

NG DialogPack Guide © 2018 LMD Innovative

TNGInputDialog

Note that TNGInputDialog supports advanced execution features, like timer, OnButtonClick event and
navigation.

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Advanced Features

22

NG DialogPack Guide © 2018 LMD Innovative

Advanced Features

4 Advanced Features

Dialog Events while Executing

TNGTaskDialog and TNGInputDialog components provides several events, which can be fired while
dialog is executing. These events are:

· OnButtonClick - fired when standard or custom button (or command link) is clicked.
· OnRadioButtonClick - fired when radio-button is selected.
· OnVerificationClick - fired when verification check-box is checked/unchecked.
· OnExpanded - fired when additional ExpandableInformation is expanded or collapsed.
· OnTimer - fired periodically when internal timer is active.

Usually, if some of standard or custom buttons (or command links) has been clicked, the dialog is closed
automatically returning associated with the button ModalResult. However, this can be prevented writing
OnButtonClick event handler and assigning False value to ACanClose var event parameter. In this
case, the dialog will not be closed, and will remains executing. As already has been noted above, this is
also true for standard dialog window close button, which is treated as a button with mrCancel modal
result.

Another event, which provides a way for controlling dialog closing is OnTimer. It has AClose var
parameter, which can be set to True to close the dialog; however, unlike OnButtonClick event the
default value for this parameter is False, which states that the dialog remains executing.

All other mentioned events does not provide a way to close executing dialog at all. So, among other
purposes all these events can be used for changing dialog settings and appearance "on-the-fly". For
example, one can write OnRadioButtonClick event handler to enable or disable dialog buttons based or
change dialog Title or Text on which radio-button is selected.

Generally, the following "on-the-fly" modifications are supported:

· Dialog Title, Text and MainIcon (CustomMainIcon).
· For custom buttons: Enabled and ElevationRequired states.
· For radio-buttons: Enabled state.
· For progress-bar: all progress bar setting, such as Min, Max, Position, State and Marquee.
· ExpandedInformation.
· FooterText and FooterIcon (CustomFooterIcon).

Changing these properties from within mentioned event handlers will adjust dialog appearance
immediately. All other properties does not support this concept due to WinAPI limitation; as well, they
are not supported even in emulation mode for consistency with platform mode. For example, you cannot:

· Change dialog window Caption.
· Add/remove standard or custom buttons or radio-buttons. Change their captions.
· Change expandable information button captions, e.g. ExpandButtonCaption and
CollapseButtonCaption properties.

· Change VerificationText.
· Change dialog Flags.
· ect.

Timer

23

NG DialogPack Guide © 2018 LMD Innovative

Advanced Features

TNGTaskDialog and TNGInputDialog components provides built-in timer support. The timer can be
activated using tdfCallbackTimer flag. The timer will fire OnTimer event every 200ms during dialog
execution. As specified above, "on-the-fly" dialog modification is supported within OnTimer event handler.

OnTimer event provides the following parameters:

· ATickCount parameter; this parameter specifies a period in milliseconds from the dialog execution or
from the last reset.

· AReset boolean var parameter; this parameter can be set to True to reset tick count to zero. Default
parameter value is False.

· AClose boolean var parameter; this parameter can be set to True to close the dialog. Default
parameter value is False.

Following are some practical examples of timer usage:

· Updating progress-bar position to reflect background task execution point:

· Update remained time in dialog Title or Text and close the dialog after some timeout to continue
task with default action:

24

NG DialogPack Guide © 2018 LMD Innovative

Advanced Features

· Trial application dialog, which enables "Continue trial" button only after some time:

Navigation

Navigation feature allows to implement multi-page dialogs. Such kind of dialogs usually contain Next and
Previous custom buttons to allow the user to navigate between pages. Write OnButtonClick event
handler and use BeginNavigate and Navigate methods to reconfigure executing dialog to show next
page. Dialog modifications, made between BeginNavigate and Navigate methods are not propagated
to executing dialog immediately; instead, all modifications will be applied during Navigate method call. It
important to understand that the navigation is a special mode, provided by WinAPI, and thus, "on-the-fly"
modification restrictions are not applied here; the user can freely add/remove buttons or radio-buttons,
change dialog flags, ect.

Following is an example of code, which use navigation feature:

procedure TForm1.NGTaskDialog1ButtonClick(Sender: TObject;

 AModalResult: TModalResult; ACustomButton: TNGTaskDlgButtonItem;

 var ACanClose: Boolean);

begin

 if AModalResult in [100, 101] then

 begin

 if AModalResult = 101 then

 Inc(PageNum)

 else

 Dec(PageNum);

 NGTaskDialog1.BeginNavigate;

 try

 SetupPage(PageNum);

 finally

 NGTaskDialog1.Navigate;

 end;

 ACanClose := False;

 end;

end;

25

NG DialogPack Guide © 2018 LMD Innovative

Advanced Features

procedure TForm1.SetupPage(APageNum: Integer);

begin

 NGTaskDialog1.Title := 'Multi-page dialog example. Page: ' +

 IntToStr(APageNum);

 case APageNum of

 0: NGTaskDialog1.Text := 'This is the first page';

 1: NGTaskDialog1.Text := 'This is the middle page';

 2: NGTaskDialog1.Text := 'This is the last page';

 end;

 NGTaskDialog1.CustomButtons.Clear;

 if APageNum > 0 then

 with NGTaskDialog1.CustomButtons.Add do

 begin

 Caption := 'Previous';

 ModalResult := 100;

 end;

 if APageNum < 2 then

 with NGTaskDialog1.CustomButtons.Add do

 begin

 Caption := 'Next';

 ModalResult := 101;

 end

 else

 with NGTaskDialog1.CustomButtons.Add do

 begin

 Caption := 'Finish';

 ModalResult := mrOk;

 end

end;

The code above will show dialog with the following pages:

26

NG DialogPack Guide © 2018 LMD Innovative

Advanced Features

The dialog will be closed on "Finish" button click, because its ModalResult is set to mrOk.

Fluent Interface

28

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

5 Fluent Interface

NG-DialogPack fluent interface provides an easy and very convenient way for executing dialogs directly
from code, without placing dialog component on the form. Fluent interface is organized as a static
methods of TNGDialogs structure. Most of the methods are overloaded and provides different parameter
sets for simplicity of use. Our goal was to provide a way to execute a variety of commonly used dialogs,
starting from easy analogs of standard Delphi's ShowMessage, MessageDlg, InputBox or InpurQuery
functions, and continuing with more complex, highly configurable task and input dialog (via dialog
builders).

Simple methods

TNGDialogs structure provides huge amount of overloaded methods, which can be used to execute
simple common dialogs. As an example of how to use these methods, look at the following code, which
executes the analog of ShowMessage standard Delphi function:

TNGDialogs.Message('Hello World');

The code above will show the following dialog:

In the next list all simple fluent interface methods are decribed:

· Message - overloaded set of methods, which provide a way for executing message like dialogs; dialogs
are analogous to standard Delphi's ShowMessage and MessageDlg functions. The methods use the
same parameter types as used in MessageDlg. Internally, Message methods are implemented using
TNGMessageDialog, which provides look and feel, compatible with platform task dialogs.

· Info, Error, Warning - methods, which allow to execute pre-configured dialog analogous to Message,
which has single Ok button and the corresponding standard icon.

· Confirm - overloaded set of methods, which are analogous to Ifno, Error or Warning methods, but
show dialogs with question standard icon and Yes/No buttons (by default); the methods also allow to
specify required buttons explicitly.

· InputBox - overloaded set of methods, which provides a way for executing input dialogs, in a way
analogous to standard Delphi' InputBox function. Internally the methods use TNGInputDialog, which
provides task dialogs compatible look and feel. Just like standard Delphi function, InputBox methods
take ADefault string (or TDateTime) parameter and return modified by the user value.

· InputQuery - overloaded set of methods, which provides a way for executing input dialogs, in a way
analogous to standard Delphi' InputQuery function. Internally the methods use TNGInputDialog,
which provides task dialogs compatible look and feel. Just like standard Delphi function, InputQuery
methods take AValue string (or TDateTime) var parameter and return Boolean value indicating
whether the user clicked Ok button.

Dialog Builders

29

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

TNGDialogs structure provides additionally two sets of overloading methods (for TNGTaskDialog and
TNGInputDialog respectively), which returns corresponding builder structures, which allow to configure
almost all aspects of the dialogs in a simple and accurate looking code. These two sets of methods are:

· Task - overloaded set of methods, which returns TNGTaskDialog.TTaskBuilder structure, which
allows to continue inline configuration of executing TNGTaskDialog.

· Input - overloaded set of methods, which returns TNGTaskDialog.TInputBuilder structure, which
allows to continue inline configuration of executing TNGInputDialog.

Despite the fact that these methods are overloaded, they allow to specify only basic dialog properties,
like Caption, Title, Text and MainIcon as method parameters. All other dialog aspects can be
configured inside the same code statement using returned builder structure methods. Following is the
example of how to use such API:

 TNGDialogs.Task('My caption', 'My Title', 'My text')

 .Icon(Application.Icon)

 .Button('My Button', 100, True)

 .Buttons([tcbOk, tcbCancel])

 .Footer('My footer', tdiWarning)

 .Execute;

The code above will shows the following dialog:

Another example shows how to use input dialog builder:

 TNGDialogs.Input('My caption', 'My title', 'My text')

 .Icon(tdiQuestion)

 .Button('My Button', 100, True)

 .Buttons([tcbOk, tcbCancel])

 .Value('Initial value')

 .Execute;

The code above will shows the following dialog:

30

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

As can be seen, this complex dialog, which contains custom main icon, custom button (which is specified
to be a default button) and a footer with configured icon, is executed using simple and clean code.
Builder structures provides a huge sets of overloaded methods, which allows to specify:

· All text dialog properties, such as Caption or Title;
· Main icon;
· Footer text and icon;
· Expandable information;
· Verification text;
· Standard and custom buttons; including specification of custom buttons modal results, Enabled state

and specification of the default button;
· UseCommandLinks flag;
· Radio-buttons;
· Input type, input value and items for input dialog.

Note: Main and footer icon related methods allow to specify the corresponding icon in a form of standard
icon, using TNGTaskDialogIcon enumeration, or a custom icon in a form of TIcon or TStream or resource
name to load icon from.

Formally, almost all builder methods, such as Icon or Button return the builder itself, so the
configuration can be continued just in the same code expression. The exception of this rule is Execute
method and Dialog property:

Execute Method

Execute builder method should be called as a last method after all configuration methods. It executes
pre-configured dialog and return TModalResult, just like the corresponding dialog's Execute method.
Usually the returned value somehow used in if\then or case\off Delphi construct to know, which
button has been clicked; in such cases whole dialog building expression can be placed directly inside
mentioned constructs. For example:

 case TNGDialogs.Task('My caption', 'My Title', 'My text')

 .Button('My Button', 100, True)

 .Buttons([tcbOk, tcbCancel])

 .Execute of

 mrOk:

 { Do something } ;

 mrCancel:

 { Do something } ;

31

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

 100:

 { Do something } ; // Custom 'My Button' clicked.

 end;

Sometimes, its required to have a reference to executed dialog, to get access to some its properties. For
example, a reference to the dialog is needed to get known, which radio-button has been selected by the
user. For such cases, Execute set of methods provides an overload, which has ADialog output
parameter. Note, that ADialog parameter type is a template smart pointer type AutoFree<>, which
allows to omit dialog instance destruction code and associated with it commonly used try\finally
construct. Following is the example code, which shows how to use AutoFree<> correctly:

var

 dlg: AutoFree<TNGTaskDialog>;

begin

 case TNGDialogs.Task('Form state', 'Set new form state',

 'Just for example')

 .Buttons([tcbOk, tcbCancel], tcbOk)

 .RadioButton('Maximize form')

 .RadioButton('Minimize form')

 .RadioButton('Close form')

 .Execute(dlg) of

 mrOk: case dlg.Selected.Index of

 0: Self.WindowState := wsMaximized;

 1: Self.WindowState := wsMinimized;

 2: Self.Close;

 end;

 mrCancel: ; // Do nothing.

 end;

end;

Dialog Property

Dialog builder property can be called instead of Execute method to obtain an instance of configured
dialog without it execution. Analogous to Execute method, it should be called as a last call after all
configuration methods. It also returns the instance of the dialog as an AutoFree<> value, which does
not require writing explicit destruction code.

Despite the fact that our fluent interface provides a variety of methods to configure executing dialog, it
does not cover all aspects. Some things, especially related to dialog events, are not included. Following is
an example, which shows how Dialog property can be used to get executing dialog reference before
execution and assign an event handler to OnButtonClick dialog event:

var

 dlg: AutoFree<TNGTaskDialog>;

begin

 dlg := TNGDialogs.Task('My caption', 'My title', 'My text')

 .Buttons([tcbOk, tcbCancel], tcbOk)

 .Dialog;

 dlg.OnButtonClick := MyButtonClick;

 dlg.Execute;

end;

There exist an even simpler way, which provides similar result, even without declaring dlg variable:

begin

 with TNGDialogs.Task('My caption', 'My title', 'My text')

 .Buttons([tcbOk, tcbCancel], tcbOk)

 .Dialog() do

32

NG DialogPack Guide © 2018 LMD Innovative

Fluent Interface

 begin

 OnButtonClick := MyButtonClick;

 Execute;

 end;

end;

	Table of Contents
	Overview
	TNGTaskDialog
	TNGInputDialog
	Advanced Features
	Fluent Interface

