
®

NG ValidatorPack Guide

USER MANUAL

© 2018 by LMD Innovative
LMD Innovative

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

3

NG ValidatorPack Guide © 2018 by LMD Innovative

Table of Contents

1. Package Overview 5

1.1 Validation Overview ... 6

1.2 NG ValidatorsPack ... 6

2. Components 9

2.1 Validated Input Controls .. 10

2.2 Validators ... 12

2.3 Validation Groups ... 14

2.4 Error Providers .. 15

2.5 Error Provider Groups .. 17

3. How To... 19

3.1 Validate a Control in a Simple Way ... 20

3.2 Use Multiple Validators for a Control .. 20

3.3 Use Multiple Error Providers with a Validator ... 21

3.4 Create a New Validated Control .. 22

3.5 Create a New Error Messaging Control ... 22

Index 0

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Package Overview

6

NG ValidatorPack Guide © 2018 by LMD Innovative

Package Overview

1 Package Overview

1.1 Validation Overview

In any real-world application there's a need for some error-checking of the data entered by the user.
When the 3-tier architecture widely accepted for business solutions is used, there are two conceptual
levels of such checks:

· client-side validation;
· server-side validation.

While the distribution of pieces of validation logic among these levels is an important issue individual to
each application, the usual approach is to implement domain-specific validation logic dependent on
business rules and data model of the application on the server side and more general and common
validation logic - on the client. Examples of typical client-side validation of the user input are to check if a
certain field is not empty, if a value is input in certain format, if a value lies in certain range etc.

Quality implementation of the client-side validation can greatly increase stability and usability of the
application and give it professional look and feel. However, this often requires writing much of the routine
code embedded into forms. In certain applications validation logic can represent the major part of the
client-side code.

NG ValidatorsPack is the solution which can significantly simplify and speed up the routine
implementation of the client-side validation logic and make the client code more concise and clear.

1.2 NG ValidatorsPack

NG ValidatorPack introduces a set of components which allow implementation of professional-level
client-side validation in an elegant and clear way without writing much code (often without any code at
all).

The two main tasks of client-side validation are:

· to check for validity a value entered by a user into some input control;
· to provide feedback about validation results (e.g. to indicate an error) in some way.

Consequently, there are three types of components involved into the most typical validation setup :

· input control being validated;
· validator component which encapsulates some validation logic;
· error provider component which implements some way of error indication.

NG ValidatorPack includes a number of example controls with validation support. These controls
implements INGValidatedControl interface. Most widely used standard VCL controls are included.
Any third-party or custom controls can be enabled to support validation by NG ValidatorsPack by
implementing INGValidatedControl interface (see How to Create a New Validated Control topic for
details).

Each of validated controls has the Validator property pointing to a validator component which defines
how values entered into this control should be validated. The ValidationMsg property gives control over

7

NG ValidatorPack Guide © 2018 by LMD Innovative

Package Overview

the feedback message which is typically used by error provider component for error indication (see
Validated Input Controls topic for details).

The validation components can be divided in two groups:

· Validators, that represent pieces of validation logic (validation rules); they can be grouped by the
Validation Group component - a special type of validator, which allows for using several validators
together to implement more complex validation rules in a declarative way (see Validation Group
topic for details);

· Error Providers, that represent a ways of error indication (feedback to user); they can be grouped by
the Error Providers Group component - a special type of error provider which allows for using several
ways of error indication (e.g. icons and hint messages) together (see Error Provider Groups topic for
details).

Error providers are connected to validators using their Provider property. Validation Group component
directly support multiple error providers with its Providers collection property; other validators can
employ multiple error providers using the Error Providers Group component assigned to their Provider
property.

So, the typical validation setup is the following: the validated input control MyControl has a
MyValidator validator component assigned to its Provider property; there's a MyProvider error
provider assigned to the Provider property of MyValidator. Each time the value in the MyControl
changes, the Validate function of MyValidator is called; if it returns a non-zero ErrorLevel value, it
means that the value violates the validation rule (e.g. doesn't match a specified regular expression) and
the DisplayError function of the MyProvider is called which performs some sort of error indication, e.g.
displays a hint message which is generally assembled using the ErrorMessage property of
MyValidator and the ValidationMsg property of MyControl. As DisplayError function gets
MyControl reference as a parameter, the error indication can be performed in a control-specific way e.g.
an icon is displayed near this control, or the hint is set for this control.

This page i s intentional ly left blank.
Remove this text from the manual
template i f you want i t completely blank.

Components

10

NG ValidatorPack Guide © 2018 by LMD Innovative

Components

2 Components

2.1 Validated Input Controls

Overview

NG ValidatorsPack introduces a set of components that represent validated (supporting
INGValidatedControl interface) versions of most widely used standard VCL controls. Any third-party or
custom controls can be enabled to support validation by NG ValidatorsPack by implementing
INGValidatedControl interface (see How to Create a New Validated Control topic for details).

Each of validated controls has the Validator property pointing to a validator component which defines
how values entered into this control should be validated. The ValidationMsg property gives control over
the feedback message which is typically used by error provider component for error indication.

INGValidatedControl interface

ILMDValidatedControl interface is to be supported by all the validation-enabled controls. It defines
some properties and methods used by Validators and Error Providers components. These properties
and methods are listed in the tables below.

Properties

Name Type Description

Control TControl A read-only reference to the validated control; typically just
points to the control itself (can be different for complex
controls aggregating other controls)

ControlBackBrush TBrush A read-only reference to the brush of the control's
background; used for the default in-place error indication
(which changes control's back color). If the control does not
support default way of in-place error indication
(SupportsDefaultIndication function returns False) this
property can be a nil reference

ControlFont TFont A read-only reference to the font of the control; used for the
default in-place error indication (which changes control's
font). If the control does not support default way of in-place
error indication (SupportsDefaultIndication function
returns False) this property can be a nil reference

ValidationMsgStri
ng

string A string used for error-indicating message. Typically should
contain a name of the data field (e.g. 'First name', 'Address')
represented by the control. Is substituted to the %F
placeholder in the ErrorMessage property of the validator
component by its GetMessage function.

Validator TNGValidationEnti
ty

A reference to the validator (or validation group) component
assigned to the control.

Methods (properties getters and setters omitted):

Name Parameters Result type Description

11

NG ValidatorPack Guide © 2018 by LMD Innovative

Components

GetValueToValidate none string Used by Validator Components to obtain the
value to be validated. Typically should return the
value of the Text property of a control.

SupportsDefaultIndica
tion

none Boolean Determines if the control supports default way of
in-place error indication. Used by the
TNGInPlaceErrorProvider component. If this
function returns True, ControlBackBrush and
ControlFont properties should provide a non-nil
meaningful values. If this function returns False,
the RespondToError procedure should perform
some actions to modify control's look
correspondingly to the passed value of
ErrorLevel.

RespondToError ErrorLevel:
TNGErrorLeve

l

none Used by the TNGInPlaceErrorProvider
component. If SupportsDefaultIndication
function returns False, this procedure should
perform some actions to modify control's look
correspondingly to the passed value of
ErrorLevel.

Aspects of introducing INGValidatedControl interface support into a control are discussed in the How
to Create a New Validated Control topic.

Example Validation Aware Controls

A set of controls is provided as examples of introducing INGValidatedControl interface support. This
set includes the following controls:

· NGValidatedEdit;
· NGValidatedComboBox;
· NGValidatedDateTimePicker;
· NGValidatedDBComboBox;
· NGValidatedDBEdit;
· NGValidatedDBGrid;
· NGValidatedDBMemo;
· NGValidatedDBRichEdit;
· NGValidatedListBox;
· NGValidatedMaskEdit;
· NGValidatedMemo;
· NGValidatedRichEdit;
· NGValidatedStringGrid;
· NGValidationStatusBar.

The grid controls demonstrate some non-typical features of validation support e.g. Validators can be
assigned to each of the columns of the gird; mapping of the vValidators from the Validators collection
property of the grid control is done by the Tag integer property of the TNGValidatorItem items of the
collection (Tag value is interpreted as the number of a column).

List, label and status bar VCL-based controls support ILMDValidatingMsgControl interface and can be
used as Error Messaging Controls by TNGControlErrorProvider.

12

NG ValidatorPack Guide © 2018 by LMD Innovative

Components

2.2 Validators

Overview

Validator components are pieces of validation logic (validation rules) which can be applied to input
controls, e.g. TNGRequiredFieldValidator tests if a control is not empty (has some value),
TNGRegExpValidator checks if the text in a control matches some regular expression etc. To validate a
control, a single validator can be used or several validators combined by a Validation Group
component.

All the validators are descendants of the TNGCustomValidator class, which in turn descends, along with
TNGCustomValidationGroup class, from the TNGValidationEntity class. These abstract classes
introduce several properties and methods common for all the validator components which control
validation process. These key properties and methods are described below.

Note: There's a set of validator components available in the NG ValidatorsPack which introduce
properties specific to their validation rules. These rules and properties are described below in the
available validators table.

Common Key Properties

Name Type Description

Active Boolean If Active is set to False, the validator component does not
perform any validation and its Validate function always
returns 0 (no errors are found); If Active is set to True
(default), the call to Validate function performs actual
validation.

ErrorLevel TNGErrorLevel =
Integer

ErrorLevel defines the 'severity' of the error which can be
captured by the validator component. It is supposed that
greater values correspond to more serious errors. This value is
returned by the components's Validate function if the error is
detected. This property is used by the Validation Group
component to define the order in which validators are applied
(they are sorted by ErrorLevel decreasing) and to determine
which Error Provider components can be used to indicate
errors from the validator component (an error provider is used
for the validator if its ErrorLevel lies in range between
MinErrorLevel and MaxErrorLevel of the error provider).

ErrorProvid
er

TNGCustomErrorProvide
r

The reference to an Error Provider (or Error Provider Group)
component which is used for feedback - indicates errors
detected by this validator.

ErrorMessag
e

string The error message which is supplied to the Error Provider
and used for error indication (e.g. as a hint for a hint message,
text in a error-indicating control etc.) The text of the message
contain placeholders of the form %<Symbol> which are replaced
by text corresponding to Symbol. %F is used by all the
validators as a placeholder for the text contained in the
ValidationMsg property of the validated control. Certain
validators introduce other specific placeholders (see below in
the Available Validators table).

13

NG ValidatorPack Guide © 2018 by LMD Innovative

Components

Common Key Methods

Name Parameters Result type Description

Validate Sender:
INGValidatedContro
l; doIndication:

Boolean

TNGErrorLeve
l

In TNGValidationEntity this function is abstract. It
is overridden in descendant validator classes to
implement actual validation logic. The Sender
parameter represents the input control which is to
be validated; the doIndication parameter
determines if the error indication using an Error
Provider component is to be performed. The actual
indication is performed only if an there's an Error
Provider assigned to the validator and its
[MinErrorLevel.. MaxErrorLevel] range
corresponds to the ErrorLevel of the validator.

Sender:
INGValidatedContro

l;

This function calls the Validate(Sender:
INGValidatedControl; doIndication: Boolean)

function with doIndication = true.

GetMessag
e

none string Returns the actual error message which is to be
used for error indication with placeholders replaced
by corresponding substitutes. Used internally, but
can also be called by the component user.

Available Validators

Name Validation rule Remarks

TNGRequiredFieldValida
tor

Checks if the validated
control is not empty
(contains a value).

Space characters are trimmed from both ends
of the string value

TNGRegExpValidator Checks if the value in the
validated control matches
the specified regular
expression (e.g. email
address, number in certain
format etc.).

The regular expression in specified by the
RegExp string property; IgnoreCase boolean
property specifies if the regular expression is
treated in case-sensitive or case-insensitive
way. RegExp sould be a Perl-compatible
regular expression (PCRE).

TNGCompareValidator Compares the value in the
validated control with the
value in some reference
control.

The reference control is specified by the
ReferenceControl property and has to
support INGValidatedControl interface; the
sign of the comparison result for successful
validation is specified by the RefSign property
and can be rsEqual, rsGreater, rsLess
(TNGRefSign enumeration). The type of the
values being compared is defined by the
ValueType property and can be vtNumber,
vtString, vtDate (TNGValueType
enumeration). If the ValidateRefControl
boolean property is set to True then with each
validation of the target control the reference
control is also validated which can result in
error indication not only for the validated
control but for the reference control as well.

14

NG ValidatorPack Guide © 2018 by LMD Innovative

Components

TNGRangeValidator Checks if the value in the
control is within the
specified range; supports
several data types.

The lower and upper range limits are specified
by the HighLimit and LowLimit properties
respectively. The type of the values
representing the range limits is defined by the
ValueType property and can be vtNumber,
vtString, vtDate (TNGValueType
enumeration).

TNGIntRangeValidator Checks if the integer value
in the control is within the
specified range.

Integer-typed version of the
TNGRangeValidator

TNGFloatRangeValidator Checks if the floating point
value in the control is within
the specified range.

Float-typed version of the TNGRangeValidator

TNGStringRangeValidato
r

Checks if the string value in
the control is within the
specified range.

String-typed version of the
TNGRangeValidator

TNGDateTimeRangeValida
tor

Checks if the date/time
value in the control is within
the specified range.

DateTime-typed version of the
TNGRangeValidator

2.3 Validation Groups

Overview

Validation group is a special type of Validator control which allows for grouping of several Validators
which can be then used as one. Validation group is a descendant of TNGValidationEntity (via
TNGCustomValidationGroup) and implements Validate method in the following way: it sequentially
calls Validate methods of all the Validators included in its Validators collection in decreasing order
of their ErrorLevel values (so testing the validated value for more serious errors first) . Resulting
ErrorLevel is the maximum of all the values returned by grouped Validators. Error messages from
grouped Validators are then dispatched to the Error Providers included into the ErrorProviders
collection according to their [MinErrorLevel;MaxErrorLevel] ranges. Validation group introduces
several properties for controlling validation process (see the table below).

As a validation group is technically a validator, it can be included into another validation group. Number
of levels of such nesting of validation groups is not limited. It provides a flexible way to form quite
complex validation rules of more simple ones and to re-use pieces of validation logic.

Warning: Loops should be avoided while nesting validation groups!

Validation logic described above is equivalent to combining logic variables represented by validators with
AND logic operator. More complex logic expressions with other logic operators and evaluation order
modifiers (brackets) can be implemented in other descendants of TNGCustomValidationGroup.

Properties

Name Type Description

Validators TNGValidators The collection of validators which are included into the group.
TNGValidatorsis a descendant of TCollection class, its items

15

NG ValidatorPack Guide © 2018 by LMD Innovative

Components

are of type TNGValidatorItem which descends from
TCollectionItem. The main property of TNGValidatorItem is
Validator of TNGValidationEntity type which can refer to a
Validator or a validation group component.

Providers TNGErrorProviders The collection of Error Providers which are available for error
indication. TNGErrorProviders is a descendant of TCollection
class, its items are of type TNGErrorProviderItem which
descends from TCollectionItem. The main property of
TNGErrorProviderItem is Provider of
TNGCustomErrorProvider type which can refer to an Error
Provider or an Error Providers Group component.

FirstErrorO
nly

Boolean When FirstErrorOnly is set to True then Validate method
stops after detecting the first error (first non-zero ErrorLevel
returned by a validator). So only the first error is indicated by
ErrorProviders. Otherwise all the validators are queried and all
the returned errors are indicated.

2.4 Error Providers

Overview

Error providers are components which support various ways of indicating to user errors detected by
Validators, e.g. TNGIconErrorProvider displays a user-defined icon near the validated control,
TNGControlErrorProvider displays a validation message in the referenced control which supports
INGValidationMsgControl interface etc.

All error providers are descendants of the TNGCustomErrorProvider class. This abstract class
introduces several properties and methods common for all the error providers components which control
indication of errors. These key properties and methods are described below.

There's a set of error provider components available in the NG ValidatorsPack which introduce properties
specific to their ways of error feedback. These properties are described below in the available error
providers table.

Common Key Properties

Name Type Description

Active Boolean If Active is set to False, the error provider component does
not perform any error indication and its DisplayError does
nothing. If Active is set to True (default), the call to
DisplayError function performs actual validation.

MinErrorLeve
l

TNGErrorLevel =
Integer

MinErrorLevel defines the lower limit of the range of error
levels of validation errors (returned by Validators) which are
handled by the error provider. Errors with error levels less then
MinErrorLevel are ignored. This allows for specifying
different ways of error indication (e.g. label controls with
different font color, different icons) for different errors.

MaxErrorLeve
l

TNGErrorLevel =
Integer

MaxErrorLevel defines the upper limit of the range of error
levels of validation errors (returned by Validators) which are

16

NG ValidatorPack Guide © 2018 by LMD Innovative

Components

handled by the error provider. Errors with error levels greater
then MinErrorLevel are ignored. This allows for specifying
different ways of error indication (e.g. label controls with
different font color, different icons) for different errors.

Common Key Methods

Name Parameters Result
type

Description

DisplayError Control:
INGValidatedControl;
ErrorMsg: String;

ErrorLevel:
TNGErrorLevel

none If ErrorLevel is non-zero, displays error in the
way supported by error provider (e.g. shows an
icon, displays a hint message etc.); otherwise
stops error indication if it makes sense (e.g.
hides an icon, removes a hint message etc.).
Control parameter is a reference to a control for
which the error is to be indicated. ErrorMsg
parameter is an error message used for error
indication (e.g. hint text, text displayed in a
devoted control etc).

Available Error Providers

Name Description

TNGInPlaceErrorProvider Modifies the appearance of the validated control: by default changes
background and font color, or lets the control itself perform any
modifications if it doesn't support default way of in-place indication (see
INGValidatedControl interface description for details). Key properties
are IndicationFontColor (the color of the control's font used for error
indication; when error indication is over, the font color is restored to the
initial value) and IndicationBackColor (the color of the control's
background used for error indication; when error indication is over, the
background color is restored to the initial value)

TNGIconErrorProvider Displays a user-defined icon near the validated control. The key
properties are: Icon of type TBitmap - the icon to be displayed;
IconPosition of type TAnchorKing (can be akLeft, akTop, akRight,
akBottom) - specifies the position relative to the control where the icon is
to be displayed; IconDistance of type Integer - the distance from the
control in pixels where the icon is to be displayed.

TNGHintErrorProvider Displayes a hint message for the validated control. The key property is
MessageHint - TNGMessageHint object used to display a message which
properties can be controlled to modify its appearance.

TNGMessageBoxErrorProvid
er

Displayes a standard dialog box with the error message.

TNGControlErrorProvider Passes the error message to a devoted control which supports
INGValidationMsgControl interface by calling its SetErrorMessage
method. Several NG ValidatorsPack controls support this interface
including TNGSimpleLabel and other label components, TNGListBox,
TNGStatusBar etc. Some controls from the example validation aware
controls also support this interface. See How to Create a New Error
Messaging Control topic for details. The key property of the error

17

NG ValidatorPack Guide © 2018 by LMD Innovative

Components

provider is Control which is a reference to the control supporting
INGValidationMsgControl interface.

TNGErrorProvider An integrated Error Provider component which aggregates
TNGInPlaceErrorProvider, TNGIconErrorProvider,
TNGMessageBoxErrorProvider and TNGControlErrorProvider. Can be
used to indicate errors in several ways and is in this sense an alternative
to using Error Provider Group component

See also

INGValidatedControl interface description, How to Create a New Error Messaging Control topic.

2.5 Error Provider Groups

Overview

Error providers group is a special type of Error Provider component which allows for grouping of several
error providers which can be then used as one to employ several ways of error indication simultaneously.
Error providers group is a descendant of TNGCsutomErrorProvider and implements DisplayError
method by sequential calls to DisplayError method of all the Error Providers included in the
Providers collection. Maximum of all the values returned by grouped Validators. Error messages from
grouped Validators are then dispatched to the Error Providers included into the Providers collection
according to their [MinErrorLevel..MaxErrorLevel] ranges. Validation group introduces several
properties for controlling validation process (see the table below).

As an error provider group is technically an error provider, it can be included into another error providers
group. Number of levels of such nesting of error providers groups is not limited. It provides a flexible way
to re-use error-indication sets.

Warning: Loops should be avoided while nesting error providers groups!

Notes: Validation Group component directly supports use of multiple Error Providers with its
Providers collection, so use of error provider group for multiple ways of error indication is not mandatory
when using Validation Groups. Another alternative to error provider group is TNGErrorProvider
component which is an aggregate of several error providers and supports four ways of error indication.

Properties

Name Type Description

Providers TNGErrorProviders The collection of Error Providers which are available for error
indication. TNGErrorProviders is a descendant of TCollection
class, its items are of type TNGErrorProviderItem which
descends from TCollectionItem. The main property of
TNGErrorProviderItem is Provider of
TNGCustomErrorProvider type which can refer to an Error
Provider or an Error Providers Group component.

See also

18

NG ValidatorPack Guide © 2018 by LMD Innovative

Components

Validation Group, TNGErrorProvider

How To...

20

NG ValidatorPack Guide © 2018 by LMD Innovative

How To...

3 How To...

3.1 Validate a Control in a Simple Way

The following steps have to be performed to create a validation setup for a control:

1. Place an Error Provider component on a form, e.g TNGHintErrorProvder (NGHintErrorProvder1),
set up its properties as desired; Place a Validator component on a form, e.g. TNGRegExpValidator
(NGRegExpValidator1);

2. Set up the properties of the validator component, e.g. set RegExp property of LMDRegExpValidator1
to '^[\d]+$' to allow values which represent non-negative integer numbers and ErrorMessage to
'The field %F should contain a non-negative integer number!' (where %F is a placeholder
for the field name);

3. Set Provider property of LMDRegExpValidator1 to TLMDHintErrorProvder1;
4. Place a Validated Input Control on a form, e.g. TNGEdit (NGEdit1);
5. Set Validator property of LMDEdit1 to NGRegExpValidator1, ErrorMsgString property to

'Edit1'.

Now if the text in LMDEdit1 doesn't represent a non-negative integer number, a hint message will appear:
'The field Edit1 should contain a non-negative integer number!', if it does, the hint
message will disappear.

3.2 Use Multiple Validators for a Control

The solution is to use a Validation Group as the Validator for this control.

Let's consider an example where a text field NGEdit1 has to comply with the following rules:

1. not to be empty;
2. contain a valid email address;
3. contain the same email address as the field LMDEdit2.

It can be achieved by use of Validation Group component which references three Validator
components:

1. TNGRequiredFieldValidator;
2. TNGRegExpValidator;
3. TNGCompareValidator.

The following steps have to be performed:

1. Place an Error Provider component on a form, e.g TNGHintErrorProvder (NGHintErrorProvder1),
set up its properties as desired.

2. Place a TNGRequiredFieldValidator component on a form (NGRequiredFieldValidator1), set its
ErrorMessage property to 'Field %F should not be empty!'.

3. Place a TNGRegExpValidator component on a form (LMDRegExpValidator1), set its RegExp
property to a regular expression which matches a valid email address (various solutions are possible,
an example is '\b[A-Za-z0-9._%-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}\b'); set its
ErrorMessage property to 'Field %F should contain a valid email address!'.

21

NG ValidatorPack Guide © 2018 by LMD Innovative

How To...

4. Place a TNGCompareValidator component on a form (NGCompareValidator1), set its RefControl
property to LMDEdit2, set its ErrorMessage property to 'Field %F should match the value in
NGEdit2'.

5. Place a TValidationGroup component on a form (LMDValidationGroup1).
5.1.Add an item to the Validators collection of NGValidationGroup1, set its Validator property to

NGRequiredFieldValidator1;

5.2.Add an item to the Validators collection of NGValidationGroup1, set its Validator property to
NGRegExpValidator1;

5.3.Add an item to the Validators collection of NGValidationGroup1, set its Validator property to
NGCompareValidator1;

5.4.Add an item to the Providers collection of NGValidationGroup1, set its Provider property to
NGHintErrorProvider1.

6. Set Validator property of NGEdit1 to NGValidationGroup1, ErrorMsgString property to 'Edit1'.

Now if the text in NGEdit1 is empty, doesn't represent a valid email address or doesn't match a value in
NGEdit2, an appropriate hint message will appear; otherwise, the hint message will disappear.

Note: To ensure the order of the checks (and potentially make it possible to use different Error
Providers for different errors), the ErrorLevel properties of Validators should be set to appropriate
values (e.g. 3, 2, 1 respectively).

3.3 Use Multiple Error Providers with a Validator

The most natural solution is to use an Error Providers Group as the Error Provider for the Validator
of this control.

Let's consider the same example as in How to Use Multiple Validators for a Control walk-through,
but so that possible errors are to be indicated in the following ways:

1. if NGEdit1 is empty, a message box should be displayed;
2. if NGEdit1 doesn't contain a valid email address, a message should be displayed by a

NGSimpleLabel1 label component;
3. if the value in NGEdit1 doesn't match the value in NGEdit2, a hint for this control should be

displayed.

It can be achieved by use of Error Providers Group component which references three Validator
components:

1. TNGMessageBoxErrorProvider;
2. TNGControlErrorProvider;
3. TNGHintErrorProvider;

The following steps have to be performed:

1. Place TNGMessageBoxErrorProvider component (NGMessageBoxErrorProvider1) on a form; set its
MaxErrorLevel and MinErrorLevel properties to 3.

2. Place TNGControlErrorProvider component (NGControlErrorProvider1) on a form; set its
MaxErrorLevel and MinErrorLevel properties to 2, its Control property to LMDSimpleLabel1;

3. Place TNGHintErrorProvider component (NGHintErrorProvider1) on a form; set its
MaxErrorLevel and MinErrorLevel properties to 1;

4. Place TNGErrorProvidersGroup component (NGErrorProvidersGroup1) on a form
4.1. Add an item to its Providers collection, set its Provider property to

NGMessageBoxErrorProvider1;

22

NG ValidatorPack Guide © 2018 by LMD Innovative

How To...

4.2. Add an item to its Providers collection, set its Provider property to NGControlErrorProvider1;
4.3. Add an item to its Providers collection, set its Provider property to NGHintErrorProvider1;

5. Perform steps 2-5.3 from How to use multiple validators for a control walk-through;
6. Add an item to the Providers collection of NGValidationGroup1, set its Provider property to

NGErrorProvidersGroup1.

Now the errors in field NGEdit1 should be indicated as formulated above.

Note: In this example Error Provider components could be added directly to the Providers collection
of NGValidationGroup1. However, if not a Validation Group but a single Validator is used for a
control, use of Error Providers Group is the best option.

3.4 Create a New Validated Control

A validated control is any control which supports INGValidatedControl interface. Following are some
notes on adding INGValidatedControl interface support to a control:

1. The control should maintain a reference (of type TNGValidationEntity) to the validator assigned to
its Validator property (e.g. FValidator); Notification procedure should be overridden to handle
referenced validator component destruction (see Borland documentation for details);

2. The control should call the Validate function of FValidator after any change of the value contained
in this control, as a rule passing Self as Sender parameter; typically Change method should be
overridden for this purpose;

3. If the control should respond to in-place error indication in the default way, as performed by
TNGInPlaceErrorProvider (font and background colors are changed to specified
values),SupportsDefaultIndication function should return True and ControlBackBrush and
ControlFont properties should provide a non-nil meaningful values (typically values of control's Font
and Brush properties). If some special in-place indication is desired, SupportsDefaultIndication
function should return False, and RespondToError procedure should perform some actions to modify
control's look correspondingly to the passed value of ErrorLevel.

4. GetValueToValidate function should return a value which is to be validated (entered/seen by a
user); often it is the value of the control's Text property;

5. Control property should in most cases refer to control's Self (for specific controls which aggregate
other controls it can refer to one of the aggregated controls).

See provided with the package example validation aware controls for examples of implementing validated
controls.

3.5 Create a New Error Messaging Control

Often a convenient and useful way of validation feedback is to display an error message in some control
e.g. label, list box (which can serve as validation log), status bar etc. This way of error indication is
supported by TNGControlErrorProvider which references such a control with its ErrMsgControl
property. The error messaging control has to support INGValidatingMsgControl interface.

INGValidatedControl interface methods:

Name Parameters Result type Description

23

NG ValidatorPack Guide © 2018 by LMD Innovative

How To...

SetErrorMessage Val : string;
ErrorLevel:
Integer

none If ErrorLevel is non-zero should display (or
append) the error message val; otherwise should
clear the error message.

GetLastErrorMessa
ge

none string Should return the most recent (currently visible)
error message.

See provided with the package example validation aware controls for examples of implementing validated
controls.

	Table of Contents
	Package Overview
	Validation Overview
	NG ValidatorsPack

	Components
	Validated Input Controls
	Validators
	Validation Groups
	Error Providers
	Error Provider Groups

	How To...
	Validate a Control in a Simple Way
	Use Multiple Validators for a Control
	Use Multiple Error Providers with a Validator
	Create a New Validated Control
	Create a New Error Messaging Control

